Lecture \#26, 27: Solving the Black-Scholes Partial Differential Equation

Our goal for this lecture is to solve the Black-Scholes partial differential equation

$$
\begin{equation*}
\dot{V}(t, x)+\frac{\sigma^{2}}{2} x^{2} V^{\prime \prime}(t, x)+r x V^{\prime}(t, x)-r V(t, x)=0 \tag{16.1}
\end{equation*}
$$

for $V(t, x), 0 \leq t \leq T, x \in \mathbb{R}$, subject to the boundary condition

$$
V(T, x)=(x-E)^{+}
$$

The first observation is that it suffices to solve (16.1) when $r=0$. That is, if W satisfies

$$
\begin{equation*}
\dot{W}(t, x)+\frac{\sigma^{2}}{2} x^{2} W^{\prime \prime}(t, x)=0 \tag{16.2}
\end{equation*}
$$

and $V(t, x)=e^{r(t-T)} W\left(t, e^{r(T-t)} x\right)$, then $V(t, x)$ satisfies (16.1) and $V(T, x)=W(T, x)$.
This can be checked by differentiation. There is, however, an "obvious" reason why it is true, namely due to the time value of money mentioned in Lecture \#2. If money invested in a cash deposit grows at continuously compounded interest rate r, then $\$ x$ at time T is equivalent to $\$ e^{r(t-T)} x$ at time t.

Exercise 16.1. Verify (using the multivariate chain rule) that if $W(t, x)$ satisfies (16.2) and $V(t, x)=e^{r(t-T)} W\left(t, e^{r(T-t)} x\right)$, then $V(t, x)$ satisfies (16.1) and $V(T, x)=W(T, x)$.

Since we have already seen that the Black-Scholes partial differential equation (16.1) does not depend on μ, we can assume that $\mu=0$. We have also just shown that it suffices to solve (16.1) when $r=0$. Therefore, we will use W to denote the Black-Scholes solution in the $r=0$ case, i.e., the solution to (16.2), and we will then use V as the solution in the $r>0$ case, i.e., the solution to (16.1), where

$$
\begin{equation*}
V(t, x)=e^{r(t-T)} W\left(t, e^{r(T-t)} x\right) \tag{16.3}
\end{equation*}
$$

We now note from (15.3) that the SDE for $W\left(t, S_{t}\right)$ is

$$
\mathrm{d} W\left(t, S_{t}\right)=\sigma S_{t} W^{\prime}\left(t, S_{t}\right) \mathrm{d} B_{t}+\left[\dot{W}\left(t, S_{t}\right)+\mu S_{t} W^{\prime}\left(t, S_{t}\right)+\frac{\sigma^{2}}{2} S_{t}^{2} W^{\prime \prime}\left(t, S_{t}\right)\right] \mathrm{d} t
$$

We are assuming that $\mu=0$ so that

$$
\mathrm{d} W\left(t, S_{t}\right)=\sigma S_{t} W^{\prime}\left(t, S_{t}\right) \mathrm{d} B_{t}+\left[\dot{W}\left(t, S_{t}\right)+\frac{\sigma^{2}}{2} S_{t}^{2} W^{\prime \prime}\left(t, S_{t}\right)\right] \mathrm{d} t
$$

We are also assuming that $W(t, x)$ satisfies the Black-Scholes PDE given by (16.2) which is exactly what is needed to make the $\mathrm{d} t$ term equal to 0 . Thus, we have reduced the SDE for $W\left(t, S_{t}\right)$ to

$$
\mathrm{d} W\left(t, S_{t}\right)=\sigma S_{t} W^{\prime}\left(t, S_{t}\right) \mathrm{d} B_{t}
$$

We now have a stochastic differential equation with no $\mathrm{d} t$ term which means, using Theorem 12.6, that $W\left(t, S_{t}\right)$ is a martingale. Formally, if $M_{t}=W\left(t, S_{t}\right)$, then the stochastic process $\left\{M_{t}, t \geq 0\right\}$ is a martingale with respect to the Brownian filtration $\left\{\mathcal{F}_{t}, t \geq 0\right\}$.
Next, we use the fact that martingales have stable expectation at fixed times to conclude that

$$
\mathbb{E}\left(M_{0}\right)=\mathbb{E}\left(M_{T}\right) .
$$

Since we know the value of the European call option at time T is $W\left(T, S_{T}\right)=\left(S_{T}-E\right)^{+}$, we see that

$$
M_{T}=W\left(T, S_{T}\right)=\left(S_{T}-E\right)^{+}
$$

Furthermore, $M_{0}=W\left(0, S_{0}\right)$ is non-random (since S_{0}, the stock price at time 0 , is known), and so we conclude that $M_{0}=\mathbb{E}\left(M_{T}\right)$ which implies

$$
\begin{equation*}
W\left(0, S_{0}\right)=\mathbb{E}\left[\left(S_{T}-E\right)^{+}\right] . \tag{16.4}
\end{equation*}
$$

The final step is to actually calculate the expected value in (16.4). Since we are assuming $\mu=0$, the stock price follows geometric Brownian motion $\left\{S_{t}, t \geq 0\right\}$ where

$$
S_{t}=S_{0} \exp \left\{\sigma B_{t}-\frac{\sigma^{2}}{2} t\right\}
$$

Hence, at time T, we need to consider the random variable

$$
S_{T}=S_{0} \exp \left\{\sigma B_{T}-\frac{\sigma^{2}}{2} T\right\}
$$

We know $B_{T} \sim \mathcal{N}(0, T)$ so that we can write

$$
S_{T}=S_{0} e^{-\frac{\sigma^{2} T}{2}} e^{\sigma \sqrt{T} Z}
$$

for $Z \sim \mathcal{N}(0,1)$. Thus, we can now use the result of Exercise 3.7, namely if $a>0, b>0$, $c>0$ are constants and $Z \sim \mathcal{N}(0,1)$, then

$$
\begin{equation*}
\mathbb{E}\left[\left(a e^{b Z}-c\right)^{+}\right]=a e^{b^{2} / 2} \Phi\left(b+\frac{1}{b} \log \frac{a}{c}\right)-c \Phi\left(\frac{1}{b} \log \frac{a}{c}\right), \tag{16.5}
\end{equation*}
$$

with

$$
a=S_{0} e^{-\frac{\sigma^{2} T}{2}}, \quad b=\sigma \sqrt{T}, \quad c=E
$$

to conclude

$$
\begin{aligned}
\mathbb{E} & {\left[\left(S_{T}-E\right)^{+}\right] } \\
& =S_{0} e^{-\frac{\sigma^{2} T}{2}} e^{\frac{\sigma^{2} T}{2}} \Phi\left(\sigma \sqrt{T}+\frac{1}{\sigma \sqrt{T}} \log \frac{S_{0} e^{-\frac{\sigma^{2} T}{2}}}{E}\right)-E \Phi\left(\frac{1}{\sigma \sqrt{T}} \log \frac{S_{0} e^{-\frac{\sigma^{2} T}{2}}}{E}\right) \\
& =S_{0} \Phi\left(\frac{1}{\sigma \sqrt{T}} \log \frac{S_{0}}{E}+\frac{\sigma \sqrt{T}}{2}\right)-E \Phi\left(\frac{1}{\sigma \sqrt{T}} \log \frac{S_{0}}{E}-\frac{\sigma \sqrt{T}}{2}\right) .
\end{aligned}
$$

To account for the time value of money, we can use Exercise 16.1 to give the solution for $r>0$. That is, if $V\left(0, S_{0}\right)$ denotes the fair price (at time 0) of a European call option with strike price E, then using (16.3) we conclude

$$
\begin{aligned}
V\left(0, S_{0}\right) & =e^{-r T} W\left(0, e^{r T} S_{0}\right) \\
& =e^{-r T} e^{r T} S_{0} \Phi\left(\frac{1}{\sigma \sqrt{T}} \log \frac{e^{r T} S_{0}}{E}+\frac{\sigma \sqrt{T}}{2}\right)-E e^{-r T} \Phi\left(\frac{1}{\sigma \sqrt{T}} \log \frac{e^{r T} S_{0}}{E}-\frac{\sigma \sqrt{T}}{2}\right) \\
& =S_{0} \Phi\left(\frac{\log \left(S_{0} / E\right)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)-E e^{-r T} \Phi\left(\frac{\log \left(S_{0} / E\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right) \\
& =S_{0} \Phi\left(d_{1}\right)-E e^{-r T} \Phi\left(d_{2}\right)
\end{aligned}
$$

where

$$
d_{1}=\frac{\log \left(S_{0} / E\right)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}} \quad \text { and } \quad d_{2}=\frac{\log \left(S_{0} / E\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}=d_{1}-\sigma \sqrt{T} .
$$

AWESOME!

Remark. We have now arrived at equation (8.19) on page 80 of Higham [11]. Note that Higham only states the answer; he never actually goes through the solution of the BlackScholes PDE.

Summary. Let's summarize what we did. We assumed that the asset S followed geometric Brownian motion given by

$$
\mathrm{d} S_{t}=\sigma S_{t} \mathrm{~d} B_{t}+\mu S_{t} \mathrm{~d} t
$$

and that the risk-free bond D grew at continuously compounded interest rate r so that

$$
\mathrm{d} D\left(t, S_{t}\right)=r D\left(t, S_{t}\right) \mathrm{d} t
$$

Using Version IV of Itô's formula on the value of the option $V\left(t, S_{t}\right)$ combined with the selffinancing portfolio implied by the no arbitrage assumption led to the Black-Scholes partial differential equation

$$
\dot{V}(t, x)+\frac{\sigma^{2}}{2} x^{2} V^{\prime \prime}(t, x)+r x V^{\prime}(t, x)-r V(t, x)=0
$$

We also made the important observation that this PDE does not depend on μ. We then saw that it was sufficient to consider $r=0$ since we noted that if $W(t, x)$ solved the resulting PDE

$$
\dot{W}(t, x)+\frac{\sigma^{2}}{2} x^{2} W^{\prime \prime}(t, x)=0
$$

then $V(t, x)=e^{r(t-T)} W\left(t, e^{r(T-t)} x\right)$ solved the Black-Scholes PDE for $r>0$. We then assumed that $\mu=0$ and we found the SDE for $W\left(t, S_{t}\right)$ which had only a $\mathrm{d} B_{t}$ term (and no $\mathrm{d} t$ term). Using the fact that Itô integrals are martingales implied that $\left\{W\left(t, S_{t}\right), t \geq 0\right\}$ was a martingale, and so the stable expectation property of martingales led to the equation

$$
W\left(0, S_{0}\right)=\mathbb{E}\left(W\left(T, S_{T}\right)\right)
$$

Since we knew that $V\left(T, S_{T}\right)=W\left(T, S_{T}\right)=\left(S_{T}-E\right)^{+}$for a European call option, we could compute the resulting expectation. We then translated back to the $r>0$ case via

$$
V\left(0, S_{0}\right)=e^{-r T} W\left(0, e^{r T} S_{0}\right) .
$$

This previous observation is extremely important since it tells us precisely how to price European call options with different payoffs. In general, if the payoff function at time T is $\Lambda(x)$ so that

$$
V(T, x)=W(T, x)=\Lambda(x),
$$

then, since $\left\{W\left(t, S_{t}\right), t \geq 0\right\}$ is a martingale,

$$
W\left(0, S_{0}\right)=\mathbb{E}\left(W\left(T, S_{T}\right)\right)=\mathbb{E}\left(\Lambda\left(S_{T}\right)\right)
$$

By assuming that $\mu=0$, we can write S_{T} as

$$
S_{T}=S_{0} \exp \left\{\sigma B_{T}-\frac{\sigma^{2}}{2} T\right\}=S_{0} e^{-\frac{\sigma^{2} T}{2}} e^{\sigma \sqrt{T} Z}
$$

with $Z \sim \mathcal{N}(0,1)$. Therefore, if Λ is sufficiently nice, then $\mathbb{E}\left(\Lambda\left(S_{T}\right)\right)$ can be calculated explicitly, and we can use

$$
V\left(0, S_{0}\right)=e^{-r T} W\left(0, e^{r T} S_{0}\right)
$$

to determine the required fair price to pay at time 0 .
In particular, we can follow this strategy to answer the following question posed at the end of Lecture $\# 1$.
Example 16.2. In the Black-Scholes world, price a European option with a payoff of $\max \left\{S_{T}^{2}-K, 0\right\}$ at time T.
Solution. The required time 0 price is $V\left(0, S_{0}\right)=e^{-r T} W\left(0, e^{r T} S_{0}\right)$ where $W\left(0, S_{0}\right)=$ $\mathbb{E}\left[\left(S_{T}^{2}-K\right)^{+}\right]$. Since we can write

$$
S_{T}^{2}=S_{0}^{2} e^{-\sigma^{2} T} e^{2 \sigma \sqrt{T} Z}
$$

with $Z \sim \mathcal{N}(0,1)$, we can use (16.5) with

$$
a=S_{0}^{2} e^{-\sigma^{2} T}, \quad b=2 \sigma \sqrt{T}, \quad c=K
$$

to conclude
$V\left(0, S_{0}\right)=S_{0}^{2} e^{\left(\sigma^{2}+r\right) T} \Phi\left(\frac{\log \left(S_{0}^{2} / K\right)+\left(2 r+3 \sigma^{2}\right) T}{2 \sigma \sqrt{T}}\right)-K e^{-r T} \Phi\left(\frac{\log \left(S_{0}^{2} / K\right)+\left(2 r-\sigma^{2}\right) T}{2 \sigma \sqrt{T}}\right)$.

