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Lecture #23, 24, 25: Deriving the Black–Scholes Partial
Di↵erential Equation

Our goal for today is to use Itô’s formula to derive the Black-Scholes partial di↵erential
equation. We will then solve this equation next lecture.

Recall from Lecture #2 that D(t) denotes the value at time t of an investment which grows
according to a continuously compounded interest rate r. We know its value at time t � 0 is
given by D(t) = e

rt

D0 which is the solution to the di↵erential equation D

0(t) = rD(t) with
initial condition D(0) = D0. Written in di↵erential form, this becomes

dD(t) = rD(t) dt. (15.1)

We now assume that our stock price is modelled by geometric Brownian motion. That is,
let S

t

denote the price of the stock at time t, and assume that S

t

satisfies the stochastic
di↵erential equation

dS
t

= �S

t

dB
t

+ µS

t

dt. (15.2)

We can check using Version II of Itô’s formula (Theorem 14.9) that the solution to this SDE
is geometric Brownian motion {S

t

, t � 0} given by

S

t

= S0 exp

⇢
�B

t

+

✓
µ� �

2

2

◆
t

�

where S0 is the initial value.

Remark. There are two, equally common, ways to parametrize the drift of the geometric
Brownian motion. The first is so that the process is simpler,

S

t

= S0 exp {�Bt

+ µt} ,

and leads to the more complicated SDE

dS
t

= �S

t

dB
t

+

✓
µ+

�

2

2

◆
S

t

dt.

The second is so that the SDE is simpler,

dS
t

= �S

t

dB
t

+ µS

t

dt,

and leads to the more complicated process

S

t

= S0 exp

⇢
�B

t

+

✓
µ� �

2

2

◆
t

�
.

We choose the parametrization given by (15.2) to be consistent with Higham [11].
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We also recall from Lecture #1 the definition of a European call option.

Definition 15.1. A European call option with strike price E at time T gives its holder an
opportunity (i.e., the right, but not the obligation) to buy from the writer one share of the
prescribed stock at time T for price E.

Notice that if, at time T , the value of the stock is less than E, then the option is worthless
and will not be exercised, but if the value of the stock is greater than E, then the option is
valuable and will therefore be exercised.

That is,

• if S
T

 E, then the option is worthless, but

• if S
T

> E, then the option has the value S

T

� E.

Thus, the value of the option at time T is (S
T

�E)+ = max{0, S
T

�E}. Our goal, therefore,
is to determine the value of this option at time 0.

We will write V to denote the value of the option. Since V depends on both time and on the
underlying stock, we see that V (t, S

t

) denotes the value of the option at time t, 0  t  T .

Hence,

• V (T, S
T

) = (S
T

� E)+ is the value of the option at the expiry time T , and

• V (0, S0) denotes the value of option at time 0.

Example 15.2. Assuming that the function V 2 C

1([0,1))⇥ C

2(R), use Itô’s formula on
V (t, S

t

) to compute dV (t, S
t

).

Solution. By Version IV of Itô’s formula (Theorem 14.12), we find

dV (t, S
t

) = V̇ (t, S
t

) dt+ V

0(t, S
t

) dS
t

+
1

2
V

00(t, S
t

) dhSi
t

.

From (15.2), the SDE for geometric Brownian motion is

dS
t

= �S

t

dB
t

+ µS

t

dt

and so we find
dhSi

t

= (dS
t

)2 = �

2
S

2
t

dt

using the rules (dB
t

)2 = dt, (dt)2 = (dB
t

)(dt) = (dt)(dB
t

) = 0. Hence, we conclude

dV (t, S
t

) = V̇ (t, S
t

) dt+ V

0(t, S
t

)
⇥
�S

t

dB
t

+ µS

t

dt
⇤
+

1

2
V

00(t, S
t

)
⇥
�

2
S

2
t

dt
⇤

= �S

t

V

0(t, S
t

) dB
t

+


V̇ (t, S

t

) + µS

t

V

0(t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)

�
dt. (15.3)
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We now recall the no arbitrage assumption from Lecture #2 which states that “there is never
an opportunity to make a risk-free profit that gives a greater return than that provided by
interest from a bank deposit.”

Thus, to find the fair value of the option V (t, S
t

), 0  t  T , we will set up a replicating
portfolio of assets and bonds that has precisely the same risk at time t as the option does
at time t. The portfolio consists of a cash deposit D and a number A of assets.

We assume that we can vary the number of assets and the size of our cash deposit at time
t so that both D and A are allowed to be functions of both the time t and the asset price
S

t

. (Technically, our trading strategy needs to be previsible; we can only alter our portfolio
depending on what has happened already.)

That is, if ⇧ denotes our portfolio, then the value of our portfolio at time t is given by

⇧(t, S
t

) = A(t, S
t

)S
t

+D(t, S
t

). (15.4)

Recall that we are allowed to short-sell both the stocks and the bonds and that there are no
transaction costs involved. Furthermore, it is worth noting that, although our strategy for
buying bonds may depend on both the time and the behaviour of the stock, the bond is still
a risk-free investment which evolves according to (15.1) as

dD(t, S
t

) = rD(t, S
t

) dt. (15.5)

The assumption that the portfolio is replicating means precisely that the portfolio is self-
financing ; in other words, the value of the portfolio one time step later is financed entirely
by the current wealth. In terms of stochastic di↵erentials, the self-financing condition is

d⇧(t, S
t

) = A(t, S
t

) dS
t

+ dD(t, S
t

),

which, using (15.2) and (15.5), is equivalent to

d⇧(t, S
t

) = A(t, S
t

)
⇥
�S

t

dB
t

+ µS

t

dt
⇤
+ rD(t, S

t

) dt

= �A(t, S
t

)S
t

dB
t

+
⇥
µA(t, S

t

)S
t

+ rD(t, S
t

)
⇤
dt. (15.6)

The final step is to consider V (t, S
t

)�⇧(t, S
t

). By the no arbitrage assumption, the change
in V (t, S

t

) � ⇧(t, S
t

) over any time step is non-random. Furthermore, it must equal the
corresponding growth o↵ered by the continuously compounded risk-free interest rate. In
terms of di↵erentials, if we write

U

t

= V (t, S
t

)� ⇧(t, S
t

),

then U

t

must be non-random and grow according to (15.1) so that

dU
t

= rU

t

dt.

That is,
d
⇥
V (t, S

t

)� ⇧(t, S
t

)
⇤
= r

⇥
V (t, S

t

)� ⇧(t, S
t

)
⇤
dt. (15.7)
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The logic is outlined by Higham [11] on page 79.

Using (15.3) for dV (t, S
t

) and (15.6) for d⇧(t, S
t

), we find

d
⇥
V (t, S

t

)� ⇧(t, S
t

)
⇤

=

✓
�S

t

V

0(t, S
t

) dB
t

+


V̇ (t, S

t

) + µS

t

V

0(t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)

�
dt

◆

�
✓
�A(t, S

t

)S
t

dB
t

+
⇥
µA(t, S

t

)S
t

+ rD(t, S
t

)
⇤
dt

◆

= �S

t

⇥
V

0(t, S
t

)� A(t, S
t

)
⇤
dB

t

+


V̇ (t, S

t

) + µS

t

V

0(t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)� µA(t, S
t

)S
t

� rD(t, S
t

)

�
dt

= �S

t

⇥
V

0(t, S
t

)� A(t, S
t

)
⇤
dB

t

+


V̇ (t, S

t

) +
�

2

2
S

2
t

V

00(t, S
t

)� rD(t, S
t

) + µS

t

⇥
V

0(t, S
t

)� A(t, S
t

)
⇤�

dt. (15.8)

Since we assume that the change over any time step is non-random, it must be the case that
the dB

t

term is 0. In order for the dB
t

term to be 0, we simply choose

A(t, S
t

) = V

0(t, S
t

).

This means that that dt term

V̇ (t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)� rD(t, S
t

) + µS

t

⇥
V

0(t, S
t

)� A(t, S
t

)
⇤

reduces to

V̇ (t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)� rD(t, S
t

)

since we already need A(t, S
t

) = V

0(t, S
t

) for the dB
t

piece. Looking at (15.7) therefore gives

V̇ (t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)� rD(t, S
t

) = r

⇥
V (t, S

t

)� ⇧(t, S
t

)
⇤
. (15.9)

Using the facts that
⇧(t, S

t

) = A(t, S
t

)S
t

+D(t, S
t

)

and
A(t, S

t

) = V

0(t, S
t

)

therefore imply that (15.9) becomes

V̇ (t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

)� rD(t, S
t

) = rV (t, S
t

)� rS

t

V

0(t, S
t

)� rD(t, S
t

)

which, upon simplification, reduces to

V̇ (t, S
t

) +
�

2

2
S

2
t

V

00(t, S
t

) + rS

t

V

0(t, S
t

)� rV (t, S
t

) = 0.
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In other words, we must find a function V (t, x) which satisfies the Black-Scholes partial
di↵erential equation

V̇ (t, x) +
�

2

2
x

2
V

00(t, x) + rxV

0(t, x)� rV (t, x) = 0. (15.10)

Remark. We have finally arrived at what Higham [11] calls “the famous Black-Scholes
partial di↵erential equation (PDE)” given by equation (8.15) on page 79.

We now mention two important points.

• The drift parameter µ in the asset model does NOT appear in the Black-Scholes PDE.

• Actually, we have not yet specified what type of option is being valued. The PDE
given in (15.10) must be satisfied by ANY option on the asset S whose value can be
expressed as a smooth function, i.e., a function in C

1([0,1))⇥ C

2(R).

In view of the second item, we really want to price a European call option with strike price
E. This amounts to requiring V (T, S

T

) = (S
T

�E)+. Our goal, therefore, in the next lecture
is to solve the Black-Scholes partial di↵erential equation

V̇ (t, x) +
�

2

2
x

2
V

00(t, x) + rxV

0(t, x)� rV (t, x) = 0

for V (t, x), 0  t  T , x 2 R, subject to the boundary condition

V (T, x) = (x� E)+.
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