Lecture \#20, 21, 22: Itô's Formula (Part II)

Recall from last lecture that we derived Itô's formula, namely if $f(x) \in C^{2}(\mathbb{R})$, then

$$
\begin{equation*}
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) \mathrm{d} s \tag{14.1}
\end{equation*}
$$

The derivation of Itô's formula involved carefully manipulating Taylor's theorem for the function $f(x)$. (In fact, the actual proof of Itô's formula follows a careful analysis of Taylor's theorem for a function of one variable.) As you may know from MATH 213, there is a version of Taylor's theorem for functions of two variables. Thus, by writing down Taylor's theorem for the function $f(t, x)$ and carefully checking which higher order terms disappear, one can derive the following generalized version of Itô's formula.
Consider those functions of two variables, say $f(t, x)$, which have one continuous derivative in the " t-variable" for $t \geq 0$, and two continuous derivatives in the " x-variable." If f is such a function, we say that $f \in C^{1}([0, \infty)) \times C^{2}(\mathbb{R})$.
Theorem 14.1 (Generalized Version of Itô's Formula). If $f \in C^{1}([0, \infty)) \times C^{2}(\mathbb{R})$, then

$$
\begin{equation*}
f\left(t, B_{t}\right)-f\left(0, B_{0}\right)=\int_{0}^{t} \frac{\partial}{\partial x} f\left(s, B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}}{\partial x^{2}} f\left(s, B_{s}\right) \mathrm{d} s+\int_{0}^{t} \frac{\partial}{\partial t} f\left(s, B_{s}\right) \mathrm{d} s \tag{14.2}
\end{equation*}
$$

Remark. It is traditional to use the variables t and x for the function $f(t, x)$ of two variables in the generalized version of Itô's formula. This has the unfortunate consequence that the letter t serves both as a dummy variable for the function $f(t, x)$ and as a time variable in the upper limit of integration. One way around this confusion is to use the prime $\left({ }^{\prime}\right)$ notation for derivatives in the space variable (the x-variable) and the dot (') notation for derivatives in the time variable (the t-variable). That is,

$$
f^{\prime}(t, x)=\frac{\partial}{\partial x} f(t, x), \quad f^{\prime \prime}(t, x)=\frac{\partial^{2}}{\partial x^{2}} f(t, x), \quad \dot{f}(t, x)=\frac{\partial}{\partial t} f(t, x)
$$

and so (14.2) becomes

$$
f\left(t, B_{t}\right)-f\left(0, B_{0}\right)=\int_{0}^{t} f^{\prime}\left(s, B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(s, B_{s}\right) \mathrm{d} s+\int_{0}^{t} \dot{f}\left(s, B_{s}\right) \mathrm{d} s
$$

Example 14.2. Let $f(t, x)=t x^{2}$ so that

$$
f^{\prime}(t, x)=2 x t, \quad f^{\prime \prime}(t, x)=2 t, \quad \text { and } \quad \dot{f}(t, x)=x^{2} .
$$

Therefore, the generalized version of Itô's formula implies

$$
t B_{t}^{2}=\int_{0}^{t} 2 s B_{s} \mathrm{~d} B_{s}+\frac{1}{2} \int_{0}^{t} 2 s \mathrm{~d} s+\int_{0}^{t} B_{s}^{2} \mathrm{~d} s
$$

Upon rearranging we conclude

$$
\int_{0}^{t} s B_{s} \mathrm{~d} B_{s}=\frac{1}{2}\left(t B_{t}^{2}-\frac{t^{2}}{2}-\int_{0}^{t} B_{s}^{2} \mathrm{~d} s\right)
$$

Example 14.3. Let $f(t, x)=\frac{1}{3} x^{3}-x t$ so that

$$
f^{\prime}(t, x)=x^{2}-t, \quad f^{\prime \prime}(t, x)=2 x, \quad \text { and } \quad \dot{f}(t, x)=-x
$$

Therefore, the generalized version of Itô's formula implies

$$
\frac{1}{3} B_{t}^{3}-t B_{t}=\int_{0}^{t}\left(B_{s}^{2}-s\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} 2 B_{s} \mathrm{~d} s-\int_{0}^{t} B_{s} \mathrm{~d} s=\int_{0}^{t}\left(B_{s}^{2}-s\right) \mathrm{d} B_{s}
$$

which gives the same result as was obtained in Example 13.4.
Example 14.4. If we combine our result of Example 13.5, namely

$$
\int_{0}^{t} B_{s}^{3} \mathrm{~d} B_{s}=\frac{1}{4} B_{t}^{4}-\frac{3}{2} \int_{0}^{t} B_{s}^{2} \mathrm{~d} s
$$

with our result of Example 14.2, namely

$$
\int_{0}^{t} s B_{s} \mathrm{~d} B_{s}=\frac{1}{2}\left(t B_{t}^{2}-\frac{t^{2}}{2}-\int_{0}^{t} B_{s}^{2} \mathrm{~d} s\right)
$$

then we conclude that

$$
\int_{0}^{t}\left(B_{s}^{3}-3 s B_{s}\right) \mathrm{d} B_{s}=\frac{1}{4} B_{t}^{4}-\frac{3}{2} t B_{t}^{2}+\frac{3}{4} t^{2}
$$

Example 14.5. If we re-write the results of Example 13.4 and Example 14.4 slightly differently, then we see that

$$
\int_{0}^{t} 3\left(B_{s}^{2}-s\right) \mathrm{d} B_{s}=B_{t}^{3}-3 t B_{t}
$$

and

$$
\int_{0}^{t} 4\left(B_{s}^{3}-3 s B_{s}\right) \mathrm{d} B_{s}=B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}
$$

The reason for doing this is that Theorem 12.6 tells us that Itô integrals are martingales. Hence, we see that $\left\{B_{t}^{3}-3 t B_{t}, t \geq 0\right\}$ and $\left\{B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}, t \geq 0\right\}$ must therefore be martingales with respect to the Brownian filtration $\left\{\mathcal{F}_{t}, t \geq 0\right\}$. Look back at Exercise 5.6; you have already verified that these are martingales. Of course, using Itô's formula makes for a much easier proof.

Exercise 14.6. Prove that the process $\left\{M_{t}, t \geq 0\right\}$ defined by setting

$$
M_{t}=\exp \left\{\theta B_{t}-\frac{\theta^{2} t}{2}\right\}
$$

where $\theta \in \mathbb{R}$ is a constant is a martingale with respect to the Brownian filtration $\left\{\mathcal{F}_{t}, t \geq 0\right\}$.

Example 14.7. We will now show that Theorem 9.2, the integration-by-parts formula for Wiener integrals, is a special case of the generalized version of Itô's formula. Suppose that $g:[0, \infty) \rightarrow \mathbb{R}$ is a bounded, continuous function in $L^{2}([0, \infty))$. Suppose further that g is differentiable with g^{\prime} also bounded and continuous. Let $f(t, x)=x g(t)$ so that

$$
f^{\prime}(t, x)=g(t), \quad f^{\prime \prime}(t, x)=0, \quad \text { and } \quad \dot{f}(t, x)=x g^{\prime}(t)
$$

Therefore, the generalized version of Itô's formula implies

$$
g(t) B_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} 0 \mathrm{~d} s+\int_{0}^{t} g^{\prime}(s) B_{s} \mathrm{~d} s
$$

Rearranging gives

$$
\int_{0}^{t} g(s) \mathrm{d} B_{s}=g(t) B_{t}-\int_{0}^{t} g^{\prime}(s) B_{s} \mathrm{~d} s
$$

as required.
There are a number of versions of Itô's formula that we will use; the first two we have already seen. The easiest way to remember all of the different versions is as a stochastic differential equation (or SDE).

Theorem 14.8 (Version I). If $f \in C^{2}(\mathbb{R})$, then

$$
\mathrm{d} f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) \mathrm{d} t
$$

Theorem 14.9 (Version II). If $f \in C^{1}([0, \infty)) \times C^{2}(\mathbb{R})$, then

$$
\begin{aligned}
\mathrm{d} f\left(t, B_{t}\right) & =f^{\prime}\left(t, B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} f^{\prime \prime}\left(t, B_{t}\right) \mathrm{d} t+\dot{f}\left(t, B_{t}\right) \mathrm{d} t \\
& =f^{\prime}\left(t, B_{t}\right) \mathrm{d} B_{t}+\left[\dot{f}\left(t, B_{t}\right)+\frac{1}{2} f^{\prime \prime}\left(t, B_{t}\right)\right] \mathrm{d} t .
\end{aligned}
$$

Example 14.10. Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion. Determine the SDE satisfied by

$$
X_{t}=\exp \left\{\sigma B_{t}+\mu t\right\}
$$

Solution. Consider the function $f(t, x)=\exp \{\sigma x+\mu t\}$. Since

$$
f^{\prime}(t, x)=\sigma \exp \{\sigma x+\mu t\}, \quad f^{\prime \prime}(t, x)=\sigma^{2} \exp \{\sigma x+\mu t\}, \quad \dot{f}(t, x)=\mu \exp \{\sigma x+\mu t\}
$$

it follows from Version II of Itô's formula that

$$
\mathrm{d} f\left(t, B_{t}\right)=\sigma \exp \left\{\sigma B_{t}+\mu t\right\} \mathrm{d} B_{t}+\frac{\sigma^{2}}{2} \exp \left\{\sigma B_{t}+\mu t\right\} \mathrm{d} t+\mu \exp \left\{\sigma B_{t}+\mu t\right\} \mathrm{d} t
$$

In other words,

$$
\mathrm{d} X_{t}=\sigma X_{t} \mathrm{~d} B_{t}+\left(\frac{\sigma^{2}}{2}+\mu\right) X_{t} \mathrm{~d} t
$$

Suppose that the stochastic process $\left\{X_{t}, t \geq 0\right\}$ is defined by the stochastic differential equation

$$
\mathrm{d} X_{t}=a\left(t, X_{t}\right) \mathrm{d} B_{t}+b\left(t, X_{t}\right) \mathrm{d} t
$$

where a and b are suitably smooth functions. We call such a stochastic process a diffusion (or an Itô diffusion or an Itô process).
Again, a careful analysis of Taylor's theorem provides a version of Itô's formula for diffusions.
Theorem 14.11 (Version III). Let X_{t} be a diffusion defined by the SDE

$$
\mathrm{d} X_{t}=a\left(t, X_{t}\right) \mathrm{d} B_{t}+b\left(t, X_{t}\right) \mathrm{d} t
$$

If $f \in C^{2}(\mathbb{R})$, then

$$
\mathrm{d} f\left(X_{t}\right)=f^{\prime}\left(X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) \mathrm{d}\langle X\rangle_{t}
$$

where $\mathrm{d}\langle X\rangle_{t}$ is computed as

$$
\mathrm{d}\langle X\rangle_{t}=\left(\mathrm{d} X_{t}\right)^{2}=\left[a\left(t, X_{t}\right) \mathrm{d} B_{t}+b\left(t, X_{t}\right) \mathrm{d} t\right]^{2}=a^{2}\left(t, X_{t}\right) \mathrm{d} t
$$

using the rules $\left(\mathrm{d} B_{t}\right)^{2}=\mathrm{d} t,(\mathrm{~d} t)^{2}=0,\left(\mathrm{~d} B_{t}\right)(\mathrm{d} t)=(\mathrm{d} t)\left(\mathrm{d} B_{t}\right)=0$. That is,

$$
\begin{aligned}
\mathrm{d} f\left(X_{t}\right) & =f^{\prime}\left(X_{t}\right)\left[a\left(t, X_{t}\right) \mathrm{d} B_{t}+b\left(t, X_{t}\right) \mathrm{d} t\right]+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) a^{2}\left(t, X_{t}\right) \mathrm{d} t \\
& =f^{\prime}\left(X_{t}\right) a\left(t, X_{t}\right) \mathrm{d} B_{t}+f^{\prime}\left(X_{t}\right) b\left(t, X_{t}\right) \mathrm{d} t+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) a^{2}\left(t, X_{t}\right) \mathrm{d} t \\
& =f^{\prime}\left(X_{t}\right) a\left(t, X_{t}\right) \mathrm{d} B_{t}+\left[f^{\prime}\left(X_{t}\right) b\left(t, X_{t}\right)+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) a^{2}\left(t, X_{t}\right)\right] \mathrm{d} t .
\end{aligned}
$$

And finally we give the version of Itô's formula for diffusions for functions $f(t, x)$ of two variables.

Theorem 14.12 (Version IV). Let X_{t} be a diffusion defined by the SDE

$$
\mathrm{d} X_{t}=a\left(t, X_{t}\right) \mathrm{d} B_{t}+b\left(t, X_{t}\right) \mathrm{d} t
$$

If $f \in C^{1}([0, \infty)) \times C^{2}(\mathbb{R})$, then

$$
\begin{aligned}
\mathrm{d} f\left(t, X_{t}\right) & =f^{\prime}\left(t, X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} f^{\prime \prime}\left(t, X_{t}\right) \mathrm{d}\langle X\rangle_{t}+\dot{f}\left(t, X_{t}\right) \mathrm{d} t \\
& =f^{\prime}\left(t, X_{t}\right) a\left(t, X_{t}\right) \mathrm{d} B_{t}+\left[\dot{f}\left(t, X_{t}\right)+f^{\prime}\left(t, X_{t}\right) b\left(t, X_{t}\right)+\frac{1}{2} f^{\prime \prime}\left(t, X_{t}\right) a^{2}\left(t, X_{t}\right)\right] \mathrm{d} t
\end{aligned}
$$

again computing $\mathrm{d}\langle X\rangle_{t}=\left(\mathrm{d} X_{t}\right)^{2}$ using the rules $\left(\mathrm{d} B_{t}\right)^{2}=\mathrm{d} t,(\mathrm{~d} t)^{2}=0,\left(\mathrm{~d} B_{t}\right)(\mathrm{d} t)=$ $(\mathrm{d} t)\left(\mathrm{d} B_{t}\right)=0$.

