
Statistics 441 (Fall 2014) October 10, 15, 2014
Prof. Michael Kozdron

Lecture #16, 17: Itô Integration (Part II)

Recall from last lecture that we defined the Itô integral of Brownian motion as
Z t
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where {⇡n, n = 1, 2, . . .} is a refinement of [0, t] with mesh(⇡n) ! 0 and

Ln =
nX

i=1

Bt
i�1(Bt

i

� Bt
i�1)

denotes the left-hand Riemann sum corresponding to the partition ⇡n = {0 = t0 < t1 <

· · · < tn = t}.
We saw that the definition of It depended on the intermediate point used in the Riemann
sum, and that the reason for choosing the left-hand sum was that it produced a martingale.

We now present another example which shows some of the dangers of a näıve attempt at
stochastic integration.

Example 12.1. Let {Bt, t � 0} be a realization of Brownian motion with B0 = 0, and
suppose that for any fixed 0  t < 1 we define the random variable It by

It =

Z t

0

B1 dBs.

Since B1 is constant (for a given realization), we might expect that

It =

Z t

0

B1 dBs = B1

Z t

0

dBs = B1(Bt � B0) = B1Bt.

However,
E(It) = E(B1Bt) = min{1, t} = t

which is not constant. Therefore, if we want to obtain martingales, this is not how we should
define the integral It. The problem here is that the random variable B1 is not adapted to
Ft = �(Bs, 0  s  t) for any fixed 0  t < 1.

From the previous example, we see that in order to define

It =

Z t

0

g(s) dBs

the stochastic process {g(s), 0  s  t} will necessarily need to be adapted to the Brownian
filtration {Fs, 0  s  t} = {�(Br, 0  r  s), 0  s  t}.
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Definition 12.2. Let L

2
ad denote the space of stochastic processes g = {g(t), t � 0} such

that

• g is adapted to the Brownian filtration {Ft, t � 0} (i.e., g(t) 2 Ft for every t > 0),
and

•
Z T

0

E[g2(t)] dt < 1 for every T > 0.

Our goal is to now define

It(g) =

Z t

0

g(s) dBs

for g 2 L

2
ad. This is accomplished in a more technical manner than the construction of the

Wiener integral, and the precise details will therefore be omitted. Complete details may by
found in [12], however.

The first step involves defining the integral for step stochastic processes, and the second step
is to then pass to a limit.

Suppose that g = {g(t), t � 0} is a stochastic process. We say that g is a step stochastic
process if for every t � 0 we can write

g(s,!) =
n�1X

i=1

Xi�1(!) [t
i�1,ti)(s) +Xn�1(!) [t

n�1,tn](s) (12.2)

for 0  s  t where {0 = t0 < t1 < · · · < tn = t} is a partition of [0, t] and {Xj, j =
0, 1, . . . , n� 1} is a finite collection of random variables. Define the integral of such a g as

It(g)(!) =

Z t

0

g(s,!) dBs(!) =
nX

i=1

Xi�1(!)(Bt
i

(!)� Bt
i�1(!)), (12.3)

and note that (12.3) is simply a discrete stochastic integral as in (5.1), the so-called martin-
gale transform of X by B.

The second, and more di�cult, step is show that it is possible to approximate an arbitrary
g 2 L

2
ad by a sequence of step processes gn 2 L

2
ad such that

lim
n!1

Z t

0

E(|gn(s)� g(s)|2) ds = 0.

We then define It(g) to be the limit in L

2 of the approximating Itô integrals It(gn) defined
by (12.3), and show that the limit does not depend of the choice of step processes {gn}; that
is,

It(g) = lim
n!1

It(gn) in L

2 (12.4)

and so we have the following definition.
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Definition 12.3. If g 2 L

2
ad, define the Itô integral of g to be

It(g) =

Z t

0

g(s) dBs

where It(g) is defined as the limit in (12.4).

Notice that the definition of the Itô integral did not use any approximating Riemann sums.
However, last lecture we calculated

R t

0 Bs dBs directly by taking the limit in L

2 of the ap-
proximating Riemann sums. It is important to know when both approaches give the same
answer which is the content of the following theorem. For a proof, see Theorem 4.7.1 of [12].

Theorem 12.4. If the stochastic process g 2 L

2
ad and E(g(s)g(t)) is a continuous function

of s and t, then Z t

0

g(s) dBs = lim
nX

i=1

g(ti�1)(Bt
i

� Bt
i�1) in L

2
.

Example 12.5. For example, if the stochastic process g is a Brownian motion, then Bt is
necessarily Ft-measurable with E(B2

t ) = t < 1 for every t > 0. Since E(BsBt) = min{s, t} is
a continuous function of s and t, we conclude that Theorem 12.4 can be applied to calculateR t

0 Bs dBs. This is exactly what we did in (11.6).

The following result collects together a number of properties of the Itô integral. It is relatively
straightforward to prove all of these properties when g is a step stochastic process. It is rather
more involved to pass to the appropriate limits to obtain these results for general g 2 L

2
ad.

Theorem 12.6. Suppose that g, h 2 L

2
ad, and let

It(g) =

Z t

0

g(s) dBs and It(h) =

Z t

0

h(s) dBs.

• If ↵, � 2 R are constants, then It(↵g + �h) = ↵It(g) + �It(h).

• It(g) is a random variable with I0(g) = 0, E(It(g)) = 0 and

Var(It(g)) = E[I2t (g)] =
Z t

0

E[g2(s)] ds. (12.5)

• The covariance of It(g) and It(h) is given by

E[It(g)It(h)] =
Z t

0

E[g(s)h(s)] ds.

• The process {It, t � 0} is a martingale with respect to the Brownian filtration.

• The trajectory t 7! It is a continuous function of t.
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Remark. The equality (12.5) in the second part of this theorem is sometimes known as the
Itô isometry.

Remark. It is important to observe that the Wiener integral is a special case of the Itô
integral. That is, if g is a bounded, piecewise continuous deterministic L

2([0,1)) function,
then g 2 L

2
ad and so the Itô integral of g with respect to Brownian motion can be constructed.

The fact that g is deterministic means that we recover the properties for the Wiener integral
from the properties in Theorem 12.6 for the Itô integral. Theorem 9.2, the integration-by-
parts formula for Wiener integration, will follow from the generalized version of Itô’s formula
(which we will start to discuss next lecture).

Remark. It is also important to observe that, unlike the Wiener integral, there is no general
form of the distribution of It(g). In general, the Riemann sum approximations to It(g)
contain terms of the form

g(ti�1)(Bt
i

� Bt
i�1). (12.6)

When g is deterministic, the distribution of the It(g) is normal as a consequence of the fact
that the sum of independent normals is normal. However, when g is random, the distribution
of (12.6) is not necessarily normal. The following exercises illustrates this point.

Exercise 12.7. Consider

I =

Z 1

0

Bs dBs =
B

2
1

2
� 1

2
.

Since B1 ⇠ N (0, 1), we know that B2
1 ⇠ �

2(1), and so we conclude that

2I + 1 ⇠ �

2(1).

Simulate 10000 realizations of I and plot a histogram of 2I+1. Does your simulation match
the theory?

Exercise 12.8. Suppose that {Bt, t � 0} is a standard Brownian motion, and let the
stochastic process {g(t), t � 0} be defined as follows. At time t = 0, flip a fair coin and let
g(0) = 2 if the coin shows heads, and let g(0) = 3 if the coin shows tails. At time t =

p
2,

roll a fair die and let g(
p
2 ) equal the number of dots showing on the die. If 0 < t <

p
2,

define g(t) = g(0), and if t >
p
2, define g(t) = g(

p
2 ). Note that {g(t), t � 0} is a step

stochastic process.

(a) Express g in the form (12.2).

(b) Sketch a graph of the stochastic process {g(t), t � 0}.

(c) Determine the mean and the variance of
Z 5

0

g(s) dBs.

(d) If possible, determine the distribution of
Z 5

0

g(s) dBs.
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