Lecture \#15: Itô Integration (Part I)

Recall that for bounded, piecewise continuous deterministic $L^{2}([0, \infty))$ functions, we have defined the Wiener integral

$$
I_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s}
$$

which satisfied the following properties:

- $I_{0}=0$,
- for fixed $t>0$, the random variable I_{t} is normally distributed with mean 0 and variance

$$
\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

- the stochastic process $\left\{I_{t}, t \geq 0\right\}$ is a martingale with respect to the Brownian filtration $\left\{\mathcal{F}_{t}, t \geq 0\right\}$, and
- the trajectory $t \mapsto I_{t}$ is continuous.

Our goal for the next two lectures is to define the integral

$$
\begin{equation*}
I_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s} \tag{11.1}
\end{equation*}
$$

for random functions g.
We understand from our work on Wiener integrals that for fixed $t>0$ the stochastic integral I_{t} must be a random variable depending on the Brownian sample path. Thus, the interpretation of (11.1) is as follows. Fix a realization (or sample path) of Brownian motion $\left\{B_{t}(\omega), t \geq 0\right\}$ and a realization (depending on the Brownian sample path observed) of the stochastic process $\{g(t, \omega), t \geq 0\}$ so that, for fixed $t>0$, the integral (11.1) is really a random variable, namely

$$
I_{t}(\omega)=\int_{0}^{t} g(s, \omega) \mathrm{d} B_{s}(\omega)
$$

We begin with the example where g is a Brownian motion. This seemingly simple example will serve to illustrate more of the subtleties of integration with respect to Brownian motion.

Example 11.1. Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a Brownian motion with $B_{0}=0$. We would like to compute

$$
I_{t}=\int_{0}^{t} B_{s} \mathrm{~d} B_{s}
$$

for this particular realization $\left\{B_{t}, t \geq 0\right\}$ of Brownian motion. If Riemann integration were valid, we would expect, using the fundamental theorem of calculus, that

$$
\begin{equation*}
I_{t}=\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2}\left(B_{t}^{2}-B_{0}^{2}\right)=\frac{1}{2} B_{t}^{2} \tag{11.2}
\end{equation*}
$$

Motivated by our experience with Wiener integration, we expect that I_{t} has mean 0 . However, if I_{t} is given by (11.2), then

$$
\mathbb{E}\left(I_{t}\right)=\frac{1}{2} \mathbb{E}\left(B_{t}^{2}\right)=\frac{t}{2}
$$

We might also expect that the stochastic process $\left\{I_{t}, t \geq 0\right\}$ is a martingale; of course, $\left\{B_{t}^{2} / 2, t \geq 0\right\}$ is not a martingale, although,

$$
\begin{equation*}
\left\{\frac{1}{2} B_{t}^{2}-\frac{t}{2}, t \geq 0\right\} \tag{11.3}
\end{equation*}
$$

is a martingale. Is it possible that the value of I_{t} is given by (11.3) instead? We will now show that yes, in fact,

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2} B_{t}^{2}-\frac{t}{2}
$$

Suppose that $\pi_{n}=\left\{0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=t\right\}$ is a partition of $[0, t]$ and let

$$
L_{n}=\sum_{i=1}^{n} B_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right) \quad \text { and } \quad R_{n}=\sum_{i=1}^{n} B_{t_{i}}\left(B_{t_{i}}-B_{t_{i-1}}\right)
$$

denote the left-hand and right-hand Riemann sums, respectively. Observe that

$$
\begin{equation*}
R_{n}-L_{n}=\sum_{i=1}^{n} B_{t_{i}}\left(B_{t_{i}}-B_{t_{i-1}}\right)-\sum_{i=1}^{n} B_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)=\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2} \tag{11.4}
\end{equation*}
$$

The next theorem shows that

$$
\left(R_{n}-L_{n}\right) \nrightarrow 0 \text { as } \operatorname{mesh}\left(\pi_{n}\right)=\max _{i \leq i \leq n}\left(t_{i}-t_{i-1}\right) \rightarrow 0
$$

which implies that the attempted Riemann integration (11.2) is not valid for Brownian motion.

Theorem 11.2. If $\left\{\pi_{n}, n=1,2,3, \ldots\right\}$ is a refinement of $[0, t]$ with $\operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0$, then

$$
\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2} \rightarrow t \quad \text { in } L^{2}
$$

as $\operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0$.

Proof. To begin, notice that

$$
\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=t
$$

Let

$$
Y_{n}=\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-t=\sum_{i=1}^{n}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]=\sum_{i=1}^{n} X_{i}
$$

where

$$
X_{i}=\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)
$$

and note that

$$
Y_{n}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}=\sum_{i=1}^{n} X_{i}^{2}+2 \sum_{i<j} X_{i} X_{j} .
$$

The independence of the Brownian increments implies that $\mathbb{E}\left(X_{i} X_{j}\right)=0$ for $i \neq j$; hence,

$$
\mathbb{E}\left(Y_{n}^{2}\right)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)
$$

But

$$
\begin{aligned}
\mathbb{E}\left(X_{i}^{2}\right) & =\mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{4}\right]-2\left(t_{i}-t_{i-1}\right) \mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right]+\left(t_{i}-t_{i-1}\right)^{2} \\
& =3\left(t_{i}-t_{i-1}\right)^{2}-2\left(t_{i}-t_{i-1}\right)^{2}+\left(t_{i}-t_{i-1}\right)^{2} \\
& =2\left(t_{i}-t_{i-1}\right)^{2}
\end{aligned}
$$

since the fourth moment of a normal random variable with mean 0 and variance $t_{i}-t_{i-1}$ is $3\left(t_{i}-t_{i-1}\right)^{2}$. Therefore,

$$
\mathbb{E}\left(Y_{n}^{2}\right)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)=2 \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \leq 2 \operatorname{mesh}\left(\pi_{n}\right) \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=2 t \operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0
$$

as $\operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0$ from which we conclude that $\mathbb{E}\left(Y_{n}^{2}\right) \rightarrow 0$ as mesh $\left(\pi_{n}\right) \rightarrow 0$. However, this is exactly what it means for $Y_{n} \rightarrow 0$ in L^{2} as $\operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0$, and the proof is complete.

As a result of this theorem, we define the quadratic variation of Brownian motion to be this limit in L^{2}.

Definition 11.3. The quadratic variation of a Brownian motion $\left\{B_{t}, t \geq 0\right\}$ on the interval $[0, t]$ is defined to be

$$
Q_{2}(B[0, t])=t \quad\left(\text { in } L^{2}\right) .
$$

Since

$$
\left(R_{n}-L_{n}\right) \rightarrow t \text { in } L^{2} \text { as } \operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0
$$

we see that L_{n} and R_{n} cannot possibly have the same limits in L^{2}. This is not necessarily surprising since $B_{t_{i-1}}$ is independent of $B_{t_{i}}-B_{t_{i-1}}$ from which it follows that $\mathbb{E}\left(L_{n}\right)=0$ while $\mathbb{E}\left(R_{n}\right)=t$.

Exercise 11.4. Show that $\mathbb{E}\left(L_{n}\right)=0$ and $\mathbb{E}\left(R_{n}\right)=t$.
On the other hand,

$$
\begin{align*}
R_{n}+L_{n}=\sum_{i=1}^{n} B_{t_{i}}\left(B_{t_{i}}-B_{t_{i-1}}\right)+\sum_{i=1}^{n} B_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right) & =\sum_{i=1}^{n}\left(B_{t_{i}}+B_{t_{i-1}}\right)\left(B_{t_{i}}-B_{t_{i-1}}\right) \\
& =\sum_{i=1}^{n}\left(B_{t_{i}}^{2}-B_{t_{i-1}}^{2}\right) \\
& =B_{t_{n}}^{2}-B_{t_{0}}^{2} \\
& =B_{t}^{2}-B_{0}^{2} \\
& =B_{t}^{2} \tag{11.5}
\end{align*}
$$

Thus, from (11.4) and (11.5) we conclude that

$$
L_{n}=\frac{1}{2}\left(B_{t}^{2}-\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right) \quad \text { and } \quad R_{n}=\frac{1}{2}\left(B_{t}^{2}+\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right)
$$

and so

$$
L_{n} \rightarrow \frac{1}{2}\left(B_{t}^{2}-t\right) \quad \text { in } L^{2} \quad \text { and } \quad R_{n} \rightarrow \frac{1}{2}\left(B_{t}^{2}+t\right) \quad \text { in } L^{2} .
$$

Unlike the usual Riemann integral, the limit of these sums does depend on the intermediate points used (i.e., left- or right-endpoints). However, $\left\{B_{t}^{2}+t, t \geq 0\right\}$ is not a martingale, although $\left\{B_{t}^{2}-t, t \geq 0\right\}$ is a martingale. Therefore, while both of these limits are valid ways to define the integral I_{t}, it is reasonable to use as the definition the limit for which a martingale is produced. And so we make the following definition:

$$
\begin{align*}
\int_{0}^{t} B_{s} \mathrm{~d} B_{s} & =\lim L_{n} \text { in } L^{2} \\
& =\frac{1}{2} B_{t}^{2}-\frac{t}{2} \tag{11.6}
\end{align*}
$$

