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Lecture #14: Further Properties of the Wiener Integral

Recall that we have defined the Wiener integral of a bounded, piecewise continuous determin-
istic function in L

2([0,1)) with respect to Brownian motion as a normal random variable,
namely Z t

0

g(s) dBs ⇠ N
✓
0,

Z t

0

g

2(s) ds

◆
,

and that we have derived the integration-by-parts formula. That is, if g : [0,1) ! R is a
bounded, continuous function in L

2([0,1)) such that g is di↵erentiable with g

0 also bounded
and continuous, then Z t

0

g(s) dBs = g(t)Bt �
Z t

0

g

0(s)Bs ds

holds as an equality in distribution of random variables. The purpose of today’s lecture is
to give some further properties of the Wiener integral.

Example 10.1. Recall from Example 9.4 that
Z 1

0

Bs ds = B1 �
Z 1

0

s dBs.

We know from that example (or from Lecture #11) that
Z 1

0

Bs ds ⇠ N (0, 1/3).

Furthermore, we know that B1 ⇠ N (0, 1), and we can easily calculate that
Z 1

0

s dBs ⇠ N
✓
0,

Z 1

0

s

2 ds

◆
= N (0, 1/3).

If B1 and Z 1

0

s dBs

were independent random variables, then from Exercise 3.12 the distribution of

B1 �
Z 1

0

s dBs

would be N (0, 1 + 1/3) = N (0, 4/3). However,

B1 �
Z 1

0

s dBs =

Z 1

0

Bs ds

which we know is N (0, 1/3). Thus, we are forced to conclude that B1 and
Z 1

0

s dBs

are not independent.

10–1



Suppose that g and h are bounded, piecewise continuous functions in L

2([0,1)) and consider
the random variables

It(g) =

Z t

0

g(s) dBs

and

It(h) =

Z t

0

h(s) dBs.

As the previous example suggests, these two random variables are not, in general, indepen-
dent. Using linearity of the Wiener integral, we can now calculate their covariance. Since

It(g) =

Z t

0

g(s) dBs ⇠ N
✓
0,

Z t

0

g

2(s) ds

◆
,

It(h) =

Z t

0

h(s) dBs ⇠ N
✓
0,

Z t

0

h

2(s) ds

◆
,

and

It(g + h) =

Z t

0

[g(s) + h(s)] dBs ⇠ N
✓
0,

Z t

0

[g(s) + h(s)]2 ds

◆
,

and since

Var(It(g + h)) = Var(It(g) + It(h)) = Var(It(g)) + Var(It(h)) + 2Cov(It(g), It(h)),

we conclude that
Z t

0

[g(s) + h(s)]2 ds =

Z t

0

g

2(s) ds+

Z t

0

h

2(s) ds+ 2Cov(It(g), It(h)).

Expanding the square on the left-side and simplifying implies that

Cov(It(g), It(h)) =

Z t

0

g(s)h(s) ds.

Note that taking g = h gives

Var(It(g)) = Cov(It(g), It(g)) =

Z t

0

g(s)g(s) ds =

Z t

0

g

2(s) ds

in agreement with our previous work. This suggests that the covariance formula should not
come as a surprise to you!

Exercise 10.2. Suppose that g(s) = sin s, 0  s  ⇡, and h(s) = cos s, 0  s  ⇡.

(a) Show that Cov(I⇡(g), I⇡(h)) = 0.

(b) Prove that I⇡(g) and I⇡(h) are independent. Hint: Theorem 3.17 will be useful here.

The same proof you used for (b) of the previous exercise holds more generally.
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Theorem 10.3. If g and h are bounded, piecewise continuous functions in L

2([0,1)) with

Z t

0

g(s)h(s) ds = 0,

then the random variables It(g) and It(h) are independent.

Exercise 10.4. Prove this theorem.

We end this lecture with two extremely important properties of the Wiener integral It,
namely that {It, t � 0} is a martingale and that the trajectories t 7! It are continuous. The
proof of the following theorem requires some facts about convergence in L

2 and is therefore
beyond our present scope.

Theorem 10.5. Suppose that g : [0,1) ! R is a bounded, piecewise continuous function
in L

2([0,1)). If the process {It, t � 0} is defined by setting I0 = 0 and

It =

Z t

0

g(s) dBs

for t > 0, then

(a) {It, t � 0} is a continuous-time martingale with respect to the Brownian filtration
{Ft, t � 0}, and

(b) the trajectory t 7! It is continuous.

That is, {It, t � 0} is a continuous-time continuous martingale.
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