Lecture \#12: Wiener Integration

Having successfully determined the Riemann integral of Brownian motion, we will now learn how to integrate with respect to Brownian motion; that is, we will study the (yet-to-bedefined) stochastic integral

$$
I_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s}
$$

Our experience with integrating Brownian motion suggests that I_{t} is really a random variable, and so one of our goals will be to determine the distribution of I_{t}.

Assume that g is bounded, piecewise continuous, and in $L^{2}([0, \infty))$, and suppose that we partition the interval $[0, t]$ by $0=t_{0}<t_{1}<\cdots<t_{n}=t$. Consider the left-hand Riemann sum

$$
\sum_{j=1}^{n} g\left(t_{j-1}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right)
$$

Notice that our experience with the discrete stochastic integral suggests that we should choose a left-hand Riemann sum; that is, our discrete-time betting strategy Y_{j-1} needed to be previsible and so our continuous-time betting strategy $g(t)$ should also be previsible. When working with the Riemann sum, the previsible condition translates into taking the left-hand Riemann sum. We do, however, remark that when following a deterministic betting strategy, this previsible condition will turn out to not matter at all. On the other hand, when we follow a random betting strategy, it will be of the utmost importance.
To begin, let

$$
I_{t}^{(n)}=\sum_{j=1}^{n} g\left(t_{j-1}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right)
$$

and notice that as in the discrete case, we can easily calculate $\mathbb{E}\left(I_{t}^{(n)}\right)$ and $\operatorname{Var}\left(I_{t}^{(n)}\right)$. Since $B_{t_{j}}-B_{t_{j-1}} \sim \mathcal{N}\left(0, t_{j}-t_{j-1}\right)$, we have

$$
\mathbb{E}\left(I_{t}^{(n)}\right)=\sum_{j=1}^{n} g\left(t_{j-1}\right) \mathbb{E}\left(B_{t_{j}}-B_{t_{j-1}}\right)=0
$$

and since the increments of Brownian motion are independent, we have

$$
\operatorname{Var}\left(I_{t}^{(n)}\right)=\sum_{j=1}^{n} g^{2}\left(t_{j-1}\right) \mathbb{E}\left(B_{t_{j}}-B_{t_{j-1}}\right)^{2}=\sum_{j=1}^{n} g^{2}\left(t_{j-1}\right)\left(t_{j}-t_{j-1}\right)
$$

We now make a crucial observation. The variance of $I_{t}^{(n)}$, namely

$$
\sum_{j=1}^{n} g^{2}\left(t_{j-1}\right)\left(t_{j}-t_{j-1}\right)
$$

should look familiar. Since $0=t_{0}<t_{1}<\cdots<t_{n}=t$ is a partition of $[0, t]$ we see that this sum is the left-hand Riemann sum approximating the Riemann integral

$$
\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

We also see the reason to assume that g is bounded, piecewise continuous, and in $L^{2}([0, \infty))$. By Theorem 6.2, this condition is sufficient to guarantee that the limit

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} g^{2}\left(t_{j-1}\right)\left(t_{j}-t_{j-1}\right)
$$

exists and equals

$$
\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

(Although by Theorem 6.3 it is possible to weaken the conditions on g, we will not concern ourselves with such matters.)

In summary, we conclude that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(I_{t}^{(n)}\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{Var}\left(I_{t}^{(n)}\right)=\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

Therefore, if we can somehow construct I_{t} as an appropriate limit of $I_{t}^{(n)}$, then it seems reasonable that $\mathbb{E}\left(I_{t}\right)=0$ and

$$
\operatorname{Var}\left(I_{t}\right)=\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

As in the previous section, however, examining the Riemann sum

$$
I_{t}^{(n)}=\sum_{j=1}^{n} g\left(t_{j-1}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right)
$$

suggests that we can determine more than just the mean and variance of $I_{t}^{(n)}$. Since disjoint Brownian increments are independent and normally distributed, and since $I_{t}^{(n)}$ is a sum of disjoint Brownian increments, we conclude that $I_{t}^{(n)}$ is normally distributed. In fact, combined with our earlier calculations, we see from Exercise 3.12 that

$$
I_{t}^{(n)} \sim \mathcal{N}\left(0, \sum_{j=1}^{n} g^{2}\left(t_{j-1}\right)\left(t_{j}-t_{j-1}\right)\right)
$$

It now follows from Theorem 3.24 that $I_{t}^{(n)}$ converges in distribution to the random variable I_{t} where

$$
I_{t} \sim \mathcal{N}\left(0, \int_{0}^{t} g^{2}(s) \mathrm{d} s\right)
$$

since the limit in distribution of normal random variables whose means and variances converge must itself be normal. Hence, we define

$$
\int_{0}^{t} g(s) \mathrm{d} B_{s}
$$

to be this limit I_{t} so that

$$
I_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} g^{2}(s) \mathrm{d} s\right)
$$

Definition 8.1. Suppose that $g:[0, \infty) \rightarrow \mathbb{R}$ is a bounded, piecewise continuous function in $L^{2}([0, \infty))$. The Wiener integral of g with respect to Brownian motion $\left\{B_{t}, t \geq 0\right\}$, written

$$
\int_{0}^{t} g(s) \mathrm{d} B_{s}
$$

is a random variable which has a

$$
\mathcal{N}\left(0, \int_{0}^{t} g^{2}(s) \mathrm{d} s\right)
$$

distribution.
Remark. We have taken the approach of defining the Wiener integral in a distributional sense. It is possible, with a lot more technical machinery, to define it as the L^{2} limit of a sequence of random variables. In the case of a random g, however, in order to the define the Itô integral of g with respect to Brownian motion, we will need to follow the L^{2} approach. Furthermore, we will see that the Wiener integral is actually a special case of the Itô integral. Thus, it seems pedagogically more appropriate to define the Wiener integral in the distributional sense since this is a much simpler construction and, arguably, more intuitive.

