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Lecture #12: Wiener Integration

Having successfully determined the Riemann integral of Brownian motion, we will now learn
how to integrate with respect to Brownian motion; that is, we will study the (yet-to-be-
defined) stochastic integral

It =

Z t

0

g(s) dBs.

Our experience with integrating Brownian motion suggests that It is really a random variable,
and so one of our goals will be to determine the distribution of It.

Assume that g is bounded, piecewise continuous, and in L

2([0,1)), and suppose that we
partition the interval [0, t] by 0 = t0 < t1 < · · · < tn = t. Consider the left-hand Riemann
sum

nX

j=1

g(tj�1)(Bt
j

� Bt
j�1).

Notice that our experience with the discrete stochastic integral suggests that we should
choose a left-hand Riemann sum; that is, our discrete-time betting strategy Yj�1 needed
to be previsible and so our continuous-time betting strategy g(t) should also be previsible.
When working with the Riemann sum, the previsible condition translates into taking the
left-hand Riemann sum. We do, however, remark that when following a deterministic betting
strategy, this previsible condition will turn out to not matter at all. On the other hand, when
we follow a random betting strategy, it will be of the utmost importance.

To begin, let

I

(n)
t =

nX

j=1

g(tj�1)(Bt
j

� Bt
j�1)

and notice that as in the discrete case, we can easily calculate E(I(n)t ) and Var(I(n)t ). Since
Bt

j

� Bt
j�1 ⇠ N (0, tj � tj�1), we have

E(I(n)t ) =
nX

j=1

g(tj�1)E(Bt
j

� Bt
j�1) = 0,

and since the increments of Brownian motion are independent, we have

Var(I(n)t ) =
nX

j=1

g

2(tj�1)E(Bt
j

� Bt
j�1)

2 =
nX

j=1

g

2(tj�1)(tj � tj�1).

We now make a crucial observation. The variance of I(n)t , namely

nX

j=1

g

2(tj�1)(tj � tj�1),
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should look familiar. Since 0 = t0 < t1 < · · · < tn = t is a partition of [0, t] we see that this
sum is the left-hand Riemann sum approximating the Riemann integral

Z t

0

g

2(s) ds.

We also see the reason to assume that g is bounded, piecewise continuous, and in L

2([0,1)).
By Theorem 6.2, this condition is su�cient to guarantee that the limit

lim
n!1

nX

j=1

g

2(tj�1)(tj � tj�1)

exists and equals Z t

0

g

2(s) ds.

(Although by Theorem 6.3 it is possible to weaken the conditions on g, we will not concern
ourselves with such matters.)

In summary, we conclude that
lim
n!1

E(I(n)t ) = 0

and

lim
n!1

Var(I(n)t ) =

Z t

0

g

2(s) ds.

Therefore, if we can somehow construct It as an appropriate limit of I(n)t , then it seems
reasonable that E(It) = 0 and

Var(It) =

Z t

0

g

2(s) ds.

As in the previous section, however, examining the Riemann sum

I

(n)
t =

nX

j=1

g(tj�1)(Bt
j

� Bt
j�1)

suggests that we can determine more than just the mean and variance of I(n)t . Since disjoint
Brownian increments are independent and normally distributed, and since I

(n)
t is a sum

of disjoint Brownian increments, we conclude that I

(n)
t is normally distributed. In fact,

combined with our earlier calculations, we see from Exercise 3.12 that

I

(n)
t ⇠ N

 
0,

nX

j=1

g

2(tj�1)(tj � tj�1)

!
.

It now follows from Theorem 3.24 that I(n)t converges in distribution to the random variable
It where

It ⇠ N
✓
0,

Z t

0

g

2(s) ds

◆
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since the limit in distribution of normal random variables whose means and variances con-
verge must itself be normal. Hence, we define

Z t

0

g(s) dBs

to be this limit It so that

It =

Z t

0

g(s) dBs ⇠ N
✓
0,

Z t

0

g

2(s) ds

◆
.

Definition 8.1. Suppose that g : [0,1) ! R is a bounded, piecewise continuous function in
L

2([0,1)). The Wiener integral of g with respect to Brownian motion {Bt, t � 0}, written
Z t

0

g(s) dBs,

is a random variable which has a

N
✓
0,

Z t

0

g

2(s) ds

◆

distribution.

Remark. We have taken the approach of defining the Wiener integral in a distributional
sense. It is possible, with a lot more technical machinery, to define it as the L

2 limit
of a sequence of random variables. In the case of a random g, however, in order to the
define the Itô integral of g with respect to Brownian motion, we will need to follow the L

2

approach. Furthermore, we will see that the Wiener integral is actually a special case of the
Itô integral. Thus, it seems pedagogically more appropriate to define the Wiener integral
in the distributional sense since this is a much simpler construction and, arguably, more
intuitive.
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