
Stat 441 Fall 2014
Assignment #4

This assignment is due at the beginning of class on Monday, November 10, 2014.

1. Suppose that {B
t

, t � 0} is a Brownian motion starting at 0. If the process {X
t

, t � 0} is
defined by setting

X

t

= exp{B
t

},

use Itô’s formula to compute dX
t

.

2. Suppose that the price of a stock {X
t

, t � 0} follows geometric Brownian motion with drift
0.05 and volatility 0.3 so that it satisfies the stochastic di↵erential equation

dX
t

= 0.3X
t

dB
t

+ 0.05X
t

dt.

If the price of the stock at time 2 is 30, determine the probability that the price of the stock at
time 2.5 is between 30 and 33.

3. Consider the Itô process {X
t

, t � 0} described by the stochastic di↵erential equation

dX
t

= 0.10X
t

dB
t

+ 0.25X
t

dt.

Calculate the probability that X
t

is at least 5% higher than X0

(a) at time t = 0.01, and

(b) at time t = 1.

4. Consider the Itô process {X
t

, t � 0} described by the stochastic di↵erential equation

dX
t

= 0.05X
t

dB
t

+ 0.1X
t

dt, X0 = 35.

Compute P{X5  48}.

5. Consider the Itô process {Y
t

, t � 0} described by the stochastic di↵erential equation

dY
t

= 0.4 dB
t

+ 0.1 dt.

If the process {X
t

, t � 0} is defined by X

t

= e

0.5Yt , determine dX
t

.

6. Suppose that the process {X
t

, t � 0} is defined by the stochastic di↵erential equation

dX
t

= �X

t

dB
t

+ µ(t)X
t

dt

where the volatility � is constant, but the drift µ(t) is a function of time. Determine (an expression
for) X

t

(assuming su�cient regularity of the function µ).



7. Suppose that g : R ! [0,1) is a bounded, piecewise continuous, deterministic function.
Assume further that g 2 L

2([0,1)) so that the Wiener integral

I

t

=

Z
t

0
g(s) dB

s

is well defined for all t � 0. Define the continuous-time stochastic process {M
t

, t � 0} by setting

M

t

= I

2
t

�
Z

t

0
g

2(s) ds =

✓Z
t

0
g(s) dB

s

◆2

�
Z

t

0
g

2(s) ds.

Use Itô’s formula to prove that {M
t

, t � 0} is a continuous-time martingale.

8. Suppose that {B
t

, t � 0} is a standard Brownian motion with B0 = 0. Consider the process
{Y

t

, t � 0} defined by setting Y

t

= B

k

t

where k is a positive integer. Use Itô’s formula to show that
Y

t

satisfies the SDE

dY
t

= kY

1�1/k
t

dB
t

+
k(k � 1)

2
Y

1�2/k
t

dt.

9. Consider the following time-inhomogeneous Ornstein-Uhlenbeck-type process

dX
t

= �(t) dB
t

� a(X
t

� g(t)) dt

where g and � are (su�ciently regular) deterministic functions of time.

(a) Find an explicit expression for the solutionX

t

of the above SDE (in terms of integrals involving
g and � with respect to B

t

).

(b) Let Y
t

= exp{X
t

+ ct}. Use Itô’s formula to compute dY
t

.

10. Suppose that {B
t

, t � 0} is a standard Brownian motion with B0 = 0. Determine an
expression for Z

t

0
sin(B

s

) dB
s

that does not involve Itô integrals.

11. Suppose that {B
t

, t � 0} is a standard Brownian motion with B0 = 0, and suppose further
that the process {X

t

, t � 0}, X0 = a > 0, satisfies the stochastic di↵erential equation

dX
t

= X

t

dB
t

+
1

X

t

dt.

(a) If f(x) = x

2, determine df(X
t

).

(b) If f(t, x) = t

2
x

2, determine df(t,X
t

).



12. We know from Theorem 14.6 that any Itô integral is a martingale. If we combine this
fact with Itô’s formula, then we have a method for “generating” martingales. That is, if we can
find functions f for which we can make the dt term in Itô’s formula vanish, then we have found a
martingale. For instance, Version I of Itô’s formula tells us that

df(B
t

) = f

0(B
t

) dB
t

+
1

2
f

00(B
t

) dt.

Hence, if we can find f(x) such that f 00(x) = 0, then f(B
t

) will be a martingale. Since f

00(x) = 0
implies that f(x) = ax + b where a, b 2 R are arbitrary constants, any linear transformation of
Brownian motion is a martingale. That is, {M

t

, t � 0} where M

t

= aB

t

+ b is a martingale.

More interesting examples arise when we consider Version II of Itô’s formula which tells us that

df(t, B
t

) = f

0(t, B
t

) dB
t

+


ḟ(t, B

t

) +
1

2
f

00(t, B
t

)

�
dt.

Hence, if we can find f(t, x) such that

ḟ(t, x) +
1

2
f

00(t, x) = 0,

then f(t, B
t

) will be a martingale.

Notice that f(t, x) = x

2 � t, f(t, x) = x

3 � 3tx, and f(t, x) = x

4 � 6tx2 + 3t2 all work.

(a) Find functions (of the two variables t and x) that contain leading terms x5 and x

6, respectively,
that generate martingales.

There are, in fact, non-polynomial solutions to this equation such as

f(t, x) = e

t/2 sin(x).

(b) Find some other non-polynomial solutions, including one involving cos(x).

13. Suppose that {B
t

, t � 0} is a standard Brownian motion, and let {F
t

, t � 0} denote
the Brownian filtration. Problem #4 on Assignment #3 asked you to compute E(sin(B

t

)|F
s

) for
0  s < t and to use this result to find a function of sin(B

t

) that is a martingale. Suppose that
s < t so that the addition formula for sine implies

sin(B
t

) = sin(B
t

�B

s

+B

s

) = sin(B
t

�B

s

) cos(B
s

) + sin(B
s

) cos(B
t

�B

s

).

Thus,
E(sin(B

t

)|F
s

) = cos(B
s

)E[sin(B
t

�B

s

)] + sin(B
s

)E[cos(B
t

�B

s

)]

using the independence of Brownian increments and properties of conditional expectation. Since
B

t

�B

s

⇠ N (0, t� s), we can write

E[sin(B
t

�B

s

)] =
1p

2⇡(t� s)

Z 1

�1
exp

⇢
� x

2

2(t� s)

�
sin(x) dx

and

E[cos(B
t

�B

s

)] =
1p

2⇡(t� s)

Z 1

�1
exp

⇢
� x

2

2(t� s)

�
cos(x) dx.



The fact that e

�x

2
sin(x) is an odd function implies that E[sin(B

t

� B

s

)] = 0. The fact that
e

�x

2
cos(x) is an even function implies that

E[cos(B
t

�B

s

)] =
2p

2⇡(t� s)

Z 1

0
exp

⇢
� x

2

2(t� s)

�
cos(x) dx.

Hence, we find

E(sin(B
t

)|F
s

) =

"
2p

2⇡(t� s)

Z 1

0
exp

⇢
� x

2

2(t� s)

�
cos(x) dx

#
sin(B

s

). (⇤)

The previous problem implies that if M
t

= e

t/2 sin(B
t

), then {M
t

, t � 0} is a martingale with
respect to the Brownian filtration. This means that E(M

t

|F
s

) = M

s

, or equivalently,

E(et/2 sin(B
t

)|F
s

) = e

s/2 sin(B
s

)

so that
E(sin(B

t

)|F
s

) = e

�(t�s)/2 sin(B
s

). (⇤⇤)

Equating (⇤) and (⇤⇤) therefore implies that

2p
2⇡(t� s)

Z 1

0
exp

⇢
� x

2

2(t� s)

�
cos(x) dx = e

�(t�s)/2
.

Using (b) of the previous exercise, mimic this calculation and compute E(cos(B
t

)|F
s

).

The value of this integral can also be found directly using the theory of residues as taught in

Math 312: Complex Analysis.


