Statistics 354 (Fall 2018)
Joint distribution of $\hat{\beta}_{0}, \hat{\beta}_{1}$ in the simple linear regression model
Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \ldots, n$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ are iid $\mathcal{N}\left(0, \sigma^{2}\right)$. Let $\hat{\beta}_{0}, \hat{\beta}_{1}$ denote the least squares estimators of β_{0}, β_{1}, respectively. We can write the simple linear regression model as $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right], \quad \text { and } \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] .
$$

It was shown in class that

$$
\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right] \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

We now find

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]=\left[\begin{array}{cc}
n & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right]
$$

so that

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n\left(\sum x_{i}^{2}\right)-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum x_{i}^{2} & -\sum x_{i} \\
-\sum x_{i} & n
\end{array}\right]
$$

Next we observe that

$$
s_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\left(\sum x_{i}^{2}\right)-n \bar{x}^{2}
$$

which implies

$$
n\left(\sum x_{i}^{2}\right)-\left(\sum x_{i}\right)^{2}=n\left(\sum x_{i}^{2}\right)-n^{2} \bar{x}^{2}=n s_{x x}
$$

Moreover,

$$
\sum x_{i}^{2}=s_{x x}+n \bar{x}^{2}
$$

so that

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n s_{x x}}\left[\begin{array}{cc}
s_{x x}+n \bar{x}^{2} & -n \bar{x} \\
-n \bar{x} & n
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}} & -\frac{\bar{x}}{s_{x x}} \\
-\frac{\bar{x}}{s_{x x}} & \frac{1}{s_{x x}}
\end{array}\right] .
$$

Therefore, we conclude that

$$
\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\beta,\left[\begin{array}{cc}
\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}}\right) & -\frac{\sigma^{2} \bar{x}}{s_{x x}} \\
-\frac{\sigma^{2} \bar{x}}{s_{x x}} & \frac{\sigma^{2}}{s_{x x}}
\end{array}\right]\right) .
$$

In particular,

$$
\hat{\beta}_{0} \sim \mathcal{N}\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x} x}\right)\right) \quad \text { and } \quad \hat{\beta}_{1} \sim \mathcal{N}\left(\beta_{1}, \frac{\sigma^{2}}{s_{x x}}\right)
$$

as derived earlier in class.

