
Statistics 354 (Fall 2018)
Analysis of Variance: Comparing Several Means

Remark. These notes are from an elementary statistics class and introduce the Analysis
of Variance technique for comparing several population means. They are meant as both a
review and a reminder of how ANOVA works. In STAT 354, we will use an Analysis of
Variance technique to assess the strength of the linear regression relationship which has the
advantage that it can be extended quite easily from simple linear regression to multiple linear
regression.

Recall that the two sample t-test allows us to compare the means of two independent popu-
lations based on data from two independent samples.

Suppose that we are interested in comparing the means from I ≥ 2 independent populations
based on I independent simple random samples from those populations, i.e., we want to
compare the means of more than two populations.

The technique is called analysis of variance, or more compactly, ANOVA.

Example. A particular brand of battery is manufactured in one of four factories. Ideally,
the mean life of the batteries should be the same from each factory. Battery life (in weeks)
of random samples from each factory are as follows.

Factory 1 Factory 2 Factory 3 Factory 4

102 107 98 99
96 102 98 97
92 103 102 91
95 95 105 96
94 97 94 95
101 100 97 90
97 99 99 95
96 101 96
95 92
98 96

mean 96.60 100.43 99.25 94.70
SD 3.06 3.99 3.37 2.83

sample size 10 7 8 10

Do the data indicate that the mean battery life is different between the factories? Boxplots
show that there is variability within each factory, but there is also variability between factory
means.
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Our goal is to test the global hypothesis

H0 : µ1 = µ2 = µ3 = µ4.

We will accomplish this using analysis of variance.

It is important to note that the probability of a Type I error (rejecting H0 when H0 is true)
for performing all pairs of comparisons is much greater than for a single comparison. For
instance, in this example where I = 4, there are 6 possibilities, namely

(i) H0 : µ1 = µ2, (ii) H0 : µ1 = µ3,
(iii) H0 : µ1 = µ4, (iv) H0 : µ2 = µ3,
(v) H0 : µ2 = µ4, (vi) H0 : µ3 = µ4.

Therefore, we have 6 opportunities to reject

H0 : µ1 = µ2 = µ3 = µ4.

Suppose that the significance level for each of these tests is 0.05. The overall significance
level α (i.e., the probability of rejecting at least once) is

α = P (rejecting at least once) = 1 − P (rejecting none) = 1 − (0.95)6 = 0.2649.

Thus, we need to develop a more useful way of performing multiple comparisons. In general,
statistical methods for dealing with multiple comparisons usually have two steps.

(1) An overall test to see if there is good evidence of any differences among the parameters
we want to compare.

(2) A detailed follow-up analysis to decide which of the parameters differ and to estimate
how large the differences are.

ANOVA is designed for the first step. The t-test can then be used as part of the second step.

The ANOVA F -test

Suppose that we have an independent simple random sample from each of I populations
and that the jth population has a normal N(µj, σ

2) distribution, where σ is the common
standard deviation in all the populations. (It is irrelevant whether or not σ is known. We
do, however, require that σ be the same for each population.)

Assume that the jth sample has size nj, sample mean xj, and sample standard deviation sj.
In general, we can list our notation as follows.

Population 1 2 · · · I
Sample x11 x21 xI1

x12 x22 xI2
...

...
...

x1n1 x2n2 xInI

Mean x1 x2 xI
Standard Deviation s1 s2 sI



Our goal is to make comparisons between µ1, µ2, . . . , µI based on the observed data.

Remark. If all the sample sizes are the same, we sometimes say that the design is balanced.

Let N = n1 + n2 + · · · + nI denote the total number of observations, and let

x =
1

N

I∑
j=1

nj∑
k=1

xjk =
1

N

I∑
j=1

njxj

denote the average of all observations taken together. (We sometimes call x the grand mean.)

In order to test the hypothesis that all I populations have the same mean,

H0 : µ1 = µ2 = · · · = µI against Ha : not all of the µj are equal,

we use the ANOVA F statistic given by

F =
MSG

MSE

where the mean square for groups is

MSG =
n1(x1 − x)2 + n2(x2 − x)2 + · · · + nI(xI − x)2

I − 1

and the mean square for error is

MSE =
(n1 − 1)s21 + (n2 − 1)s22 + · · · + (nI − 1)s2I

N − I
.

When H0 is true, the F statistic has the F distribution with I − 1 numerator degrees of
freedom and N − I denominator degrees of freedom.

That is, the degrees of freedom of the F statistic are a pair (I − 1, N − I) which are the
same as the denominators of MSG and MSE, respectively.

We usually call the numerators of MSG and MSE the sums of squares so that the sum of
squares among groups (or sum of squares between groups) is

SS(among) = n1(x1 − x)2 + n2(x2 − x)2 + · · · + nI(xI − x)2

and the sum of squares within groups is

SS(within) = (n1 − 1)s21 + (n2 − 1)s22 + · · · + (nI − 1)s2I .

An ANOVA table lists all of this information. Software packages will always give you an
ANOVA table containing the following information.

Source df SS MS
variation among groups I − 1 SS(among) MSG = SS/df
variation within groups N − I SS(within) MSE = SS/df



Example (continued). The ANOVA table for the battery factories is as follows.

Source df SS MS
variation among groups 4 − 1 = 3 170.9 MSG = 57.0
variation within groups 35 − 4 = 31 331.4 MSE = 10.7

Thus, the F test statistic is

F =
MSG

MSE
=

57.0

10.7
= 5.33

and the degress of freedom are df = (3, 31). From a table, we find that the critical values
corresponding to df = (3, 25) are

4.68 < 5.33 < 7.45

so that the P -value satisfies
0.001 < P -value < 0.01.

Thus, we can reject H0 at the 1% level and conclude that this is strong evidence that the
mean battery life differs between the four factories.

Conditions for validity of ANOVA

The ANOVA procedure is valid if the following conditions are satisfied.

(i) The groups of observations can be regarded as random samples from their respective
populations. That is, we have I independent SRSs, one from each of the I populations.
In particular, observations within each group are independent, and observations across
groups are independent.

(ii) The jth population has a normal N(µj, σ
2) distribution with unknown mean µj.

(iii) All I populations have the same standard deviation σ.

Like the t-test, the ANOVA procedure is robust meaning that departures from normality
are permitted as long as the sample sizes are sufficiently large. In fact, even for roughly
symmetric distributions with no outliers, the ANOVA procedure can be used for a sample
of size 4.

Furthermore, the results of the ANOVA F test are approximately correct when the largest
sample standard deviation is no more than twice as large as the smallest sample size.

Intuition for ANOVA

• Variability in the observed data results from variation in the population means (if they
are truly different) and from variation within each population itself.



• Differences between sample means estimate differences in the populations means, but
the observed differences may simply reflect the error in estimating µ1, . . . , µI due to
sampling variation within a population.

• Conclude the population means are not all equal if the differences in x1, x2, . . . , xI are
sufficiently large that it is unlikely that the difference is due to estimation error due to
within population variation.

Additional remarks

• Rejection of H0 : µ1 = µ2 = · · · = µI does not allow one to determine which means
are different. For that, a more detailed analysis is needed (such as the Newman-Keuls
procedure).

• ANOVA can be used for I = 2 populations in which case it gives exactly the same
results as the two-sample t test.

• Failure to reject H0 does not mean that H0 is true. It simply means that the differences
in the µj may be too small to detect given the available data.


