Statistics 354 Fall 2018 Midterm - Solutions

1. We showed in class that

$$
\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta},\left[\begin{array}{cc}
\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}}\right) & -\frac{\sigma^{2} \bar{x}}{s_{x x}} \\
-\frac{\sigma^{2} \bar{x}}{s_{x x}} & \frac{\sigma^{2}}{s_{x x}}
\end{array}\right]\right)
$$

Therefore, $\hat{\mu}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}$ has a normal distribution since it is a linear combination of the components of a multivariate normal, and so all that is left is to compute $\mathbb{E}\left(\hat{\mu}_{0}\right)$ and $\operatorname{Var}\left(\hat{\mu}_{0}\right)$. Since $\mathbb{E}\left(\hat{\mu}_{0}\right)=\mathbb{E}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)=\mathbb{E}\left(\hat{\beta}_{0}\right)+x_{0} \mathbb{E}\left(\hat{\beta}_{1}\right)=\beta_{0}+\beta_{1} x_{0}=\mu_{0}$ and

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\mu}_{0}\right)=\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) & =\operatorname{Var}\left(\hat{\beta}_{0}\right)+x_{0}^{2} \operatorname{Var}\left(\hat{\beta}_{1}\right)+2 x_{0} \operatorname{Cov}\left(\hat{\beta}_{0}, \beta_{1}\right) \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}}\right)+\frac{\sigma^{2} x_{0}^{2}}{s_{x x}}-2 \frac{\sigma^{2} x_{0} \bar{x}}{s_{x x}} \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{s_{x x}}\right),
\end{aligned}
$$

we conclude

$$
\hat{\mu}_{0} \sim \mathcal{N}\left(\mu_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{s_{x x}}\right)\right) .
$$

2. If we define

$$
\boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right], \quad \text { and } \quad \mathbf{X}=\left[\begin{array}{cc}
x_{11} & x_{12} \\
\vdots & \vdots \\
x_{n 1} & x_{n 2}
\end{array}\right]
$$

then $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ as required. Since

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{lll}
x_{11} & \ldots & x_{n 1} \\
x_{12} & \ldots & x_{n 2}
\end{array}\right]\left[\begin{array}{cc}
x_{11} & x_{12} \\
\vdots & \vdots \\
x_{n 1} & x_{n 2}
\end{array}\right]=\left[\begin{array}{cc}
\sum x_{i 1}^{2} & \sum x_{i 1} x_{i 2} \\
\sum x_{i 1} x_{i 2} & \sum x_{i 2}^{2}
\end{array}\right]
$$

so that

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{\left(\sum x_{i 1}^{2}\right)\left(\sum x_{i 2}^{2}\right)-\left(\sum x_{i 1} \sum x_{i 2}\right)^{2}}\left[\begin{array}{cc}
\sum x_{i 2}^{2} & -\sum x_{i 1} x_{i 2} \\
\sum x_{i 1} x_{i 2} & \sum x_{i 1}^{2}
\end{array}\right]
$$

we conclude

$$
\hat{\beta}_{1} \sim \mathcal{N}\left(\beta_{1}, \frac{\sigma^{2} \sum x_{i 2}^{2}}{\left(\sum x_{i 1}^{2}\right)\left(\sum x_{i 2}^{2}\right)-\left(\sum x_{i 1} x_{i 2}\right)^{2}}\right), \quad \hat{\beta}_{2} \sim \mathcal{N}\left(\beta_{2}, \frac{\sigma^{2} \sum x_{i 1}^{2}}{\left(\sum x_{i 1}^{2}\right)\left(\sum x_{i 2}^{2}\right)-\left(\sum x_{i 1} x_{i 2}\right)^{2}}\right)
$$

and

$$
\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=-\frac{\sigma^{2} \sum x_{i 1} x_{i 2}}{\left(\sum x_{i 1}^{2}\right)\left(\sum x_{i 2}^{2}\right)-\left(\sum x_{i 1} x_{i 2}\right)^{2}}
$$

3. (a) We have $\hat{\boldsymbol{\mu}}^{\prime} \mathbf{e}=(H \mathbf{y})^{\prime}(1-H) \mathbf{y}=\mathbf{y}^{\prime} H^{\prime}(I-H) \mathbf{y}=[0]$ since $H^{\prime}=H$ and $H^{2}=H$.
4. (b) Since \mathbf{y} has a multivariate normal distribution, we know that the random vector $[\boldsymbol{\mu}, \mathbf{e}]^{\prime}$ has a multivariate normal distribution. The previous result shows that $\operatorname{Cov}\left(\hat{\mu}_{i}, e_{j}\right)=0$ for all i and j which implies that $\hat{\mu}_{i}$ and e_{j} are independent for all i and j since the components of a multivariate normal are independent if and only if they are uncorrelated. Thus, $\boldsymbol{\mu}$ and e are independent.
