Stat 354 Fall 2018
Solutions to Assignment \#3
(4.19) (a) Observe that we can reformulate the linear regression model in matrix notation as

$$
\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\epsilon}
$$

where β is a (one-dimensional) parameter,

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{12}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{12}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{12}
\end{array}\right]
$$

and $\boldsymbol{\epsilon}$ satsifies $\mathbb{E}(\boldsymbol{\epsilon})=\mathbf{0}$ and $V(\boldsymbol{\epsilon})=\sigma^{2} V$ with

$$
V=\operatorname{diag}\left(x_{1}^{2}, \ldots, x_{12}^{2}\right)=\left[\begin{array}{cccc}
x_{1}^{2} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & x_{12}^{2}
\end{array}\right]
$$

We compute

$$
\mathbf{X}^{\prime} V^{-1}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{12}
\end{array}\right]\left[\begin{array}{cccc}
x_{1}^{-2} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & x_{12}^{-2}
\end{array}\right]=\left[\begin{array}{lll}
x_{1}^{-1} & \cdots & x_{12}^{-1}
\end{array}\right]
$$

and

$$
\mathbf{X}^{\prime} V^{-1} \mathbf{X}=\left[\begin{array}{lll}
x_{1}^{-1} & \cdots & x_{12}^{-1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{12}
\end{array}\right]=12
$$

so that from equations (4.58) and (4.59) we conclude that the generalized least squares estimator is

$$
\hat{\beta}^{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} V^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} V^{-1} \mathbf{y}=\frac{1}{12}\left[\begin{array}{lll}
x_{1}^{-1} & \cdots & x_{12}^{-1}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{12}
\end{array}\right]=\frac{1}{12} \sum_{i=1}^{12} \frac{y_{i}}{x_{i}}
$$

and has variance

$$
V\left(\hat{\beta}^{\mathrm{GLS}}\right)=\sigma^{2}\left(\mathbf{X}^{\prime} V^{-1} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{12} .
$$

(b) From the given data, we obtain

$$
\hat{\beta}^{\mathrm{GLS}}=\frac{1}{12} \sum_{i=1}^{12} \frac{y_{i}}{x_{i}}=\frac{1}{12} \sum_{i=1}^{12} z_{i}=\frac{30}{12}
$$

and

$$
V\left(\hat{\beta}^{\mathrm{GLS}}\right)=\frac{\sigma^{2}}{12} .
$$

(4.20) (a) Observe that we can reformulate the linear regression model in matrix notation as

$$
\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\epsilon}
$$

where β is a (one-dimensional) parameter,

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{10}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{10}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{10}
\end{array}\right]
$$

and $\boldsymbol{\epsilon}$ satsifies $\mathbb{E}(\boldsymbol{\epsilon})=\mathbf{0}$ and $V(\boldsymbol{\epsilon})=\sigma^{2} V$ with

$$
V=\operatorname{diag}\left(x_{1}, \ldots, x_{10}\right)=\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & x_{10}
\end{array}\right]
$$

We compute

$$
\mathbf{X}^{\prime} V^{-1}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{10}
\end{array}\right]\left[\begin{array}{cccc}
x_{1}^{-1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & x_{10}^{-1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]
$$

and

$$
\mathbf{X}^{\prime} V^{-1} \mathbf{X}=\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{10}
\end{array}\right]=\sum_{i=1}^{10} x_{i}
$$

so that from equations (4.58) and (4.59) we conclude that the generalized least squares estimator is

$$
\hat{\beta}^{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} V^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} V^{-1} \mathbf{y}=\left(\sum_{i=1}^{10} x_{i}\right)^{-1}\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{10}
\end{array}\right]=\frac{\sum y_{i}}{\sum x_{i}}
$$

and has variance

$$
V\left(\hat{\beta}^{\mathrm{GLS}}\right)=\sigma^{2}\left(\mathbf{X}^{\prime} V^{-1} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{\sum x_{i}} .
$$

(b) From the given data, we obtain

$$
\hat{\beta}^{\mathrm{GLS}}=\frac{\sum y_{i}}{\sum x_{i}}=\frac{10 \cdot \bar{y}}{10 \cdot \bar{x}}=\frac{30}{15}=2
$$

and

$$
V\left(\hat{\beta}^{\mathrm{GLS}}\right)=\frac{\sigma^{2}}{\sum x_{i}}=\frac{\sigma^{2}}{10 \cdot \bar{x}}=\frac{\sigma^{2}}{150} .
$$

(Note that the textbook as an error in the solution.)
(5.4) From equation (5.29), we know

$$
\mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}}
$$

where R_{j}^{2} is the coefficient of determination from the regression of x_{j} on all other regressors. Hence,

$$
\begin{aligned}
& \mathrm{VIF}_{1}=\frac{1}{1-R_{1}^{2}}=\frac{1}{1-0.6}=\frac{1}{0.4}=\frac{5}{2}=2.5, \\
& \mathrm{VIF}_{2}=\frac{1}{1-R_{2}^{2}}=\frac{1}{1-0.8}=\frac{1}{0.2}=\frac{10}{2}=5, \\
& \mathrm{VIF}_{3}=\frac{1}{1-R_{3}^{2}}=\frac{1}{1-0.9}=\frac{1}{0.1}=\frac{10}{1}=10 .
\end{aligned}
$$

(5.5) The correct answer is (e), namely high R^{2} and mostly insignificant t ratios suggest the presence of a multicollinearity problem.
(5.14) (a) We know the distribution of the least squares estimator $\hat{\boldsymbol{\beta}}$ is

$$
\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

We showed in class that the fact that \mathbf{X} is orthogonal implies $\mathbf{X}^{\prime} \mathbf{X}$ is diagonal. (And therefore $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ is diagonal as well.) This implies that the components of $\hat{\boldsymbol{\beta}}$ are uncorrelated, and since $\hat{\beta}$ has a multivariate normal distribution, we deduce that its components must be independent. Hence, $\hat{\beta}_{1}$ and $\hat{\beta}_{j}$ are independent as required.
(b) Form the augmented matrix $\mathbf{Z}=\left[\begin{array}{ll}\mathbf{X} & \mathbf{z}\end{array}\right]$ and the augmented parameter $\gamma=\left[\begin{array}{ll}\beta & \gamma\end{array}\right]^{\prime}$ so that we can express the expanded model in matrix notation as $\mathbf{y}=\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\epsilon}$. The least squares estimate for the expanded model is $\hat{\gamma}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$. Now the form of \mathbf{Z}, along with the fact that \mathbf{z} is orthogonal to the columns of \mathbf{X}, implies that

$$
\mathbf{Z}^{\prime} \mathbf{Z}=\left[\begin{array}{ll}
\mathbf{X} & \mathbf{z}
\end{array}\right]^{\prime}\left[\begin{array}{ll}
\mathbf{X} & \mathbf{z}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
\mathbf{z}^{\prime}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{X} & \mathbf{z}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{0} \\
\mathbf{0} & \mathbf{z}^{\prime} \mathbf{z}
\end{array}\right]
$$

so that

$$
\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1}=\left[\begin{array}{cc}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1}
\end{array}\right] .
$$

Therefore,

$$
\begin{aligned}
\hat{\gamma}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}=\left[\begin{array}{cc}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
\mathbf{z}^{\prime}
\end{array}\right] \mathbf{y} & =\left[\begin{array}{cc}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1} \mathbf{z}
\end{array}\right] \mathbf{y} \\
& =\left[\begin{array}{c}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
\left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1} \mathbf{z} \mathbf{y}
\end{array}\right] .
\end{aligned}
$$

In other words,

$$
\left[\begin{array}{l}
\hat{\boldsymbol{\beta}} \\
\hat{\gamma}
\end{array}\right]=\left[\begin{array}{c}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
\left(\mathbf{z}^{\prime} \mathbf{z}\right)^{-1} \mathbf{z} \mathbf{y}
\end{array}\right]
$$

implying that $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ as required.
(c) Write the design matrix \mathbf{X} as an augmented matrix $\mathbf{X}=\left[\begin{array}{ll}1 & \mathbf{X}_{c}\end{array}\right]$ where \mathbf{X}_{c} is an $(n \times p)$ matrix with the property that each column has mean 0 . We then compute

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ll}
\mathbf{1} & \mathbf{X}_{c}
\end{array}\right]^{\prime}\left[\begin{array}{ll}
\mathbf{1} & \mathbf{X}_{c}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{1}^{\prime} \\
\mathbf{X}_{c}^{\prime}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{1} & \mathbf{X}_{c}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} \mathbf{X}_{c} \\
\mathbf{X}_{c}^{\prime} \mathbf{1}^{\prime} & \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}
\end{array}\right]=\left[\begin{array}{cc}
n & \mathbf{0} \\
\mathbf{0} & \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}
\end{array}\right]
$$

using the fact that each column of \mathbf{X}_{c} has mean 0 . Therefore,

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{cc}
1 / n & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)^{-1}
\end{array}\right]
$$

and so

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{cc}
1 / n & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{1}^{\prime} \\
\mathbf{X}_{c}^{\prime}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
\sum_{\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)^{-1}{ }^{-1} / n}^{\mathbf{X}_{c}^{\prime} \mathbf{y}}
\end{array}\right]
$$

implying that

$$
\hat{\beta}_{0}=\frac{1}{n} \sum y_{i}=\bar{y}
$$

as required.
(5.16) (a) Since the possible values of z are 0 or 1 , the parameter β_{3} represents the change in the yield of the chemical reaction (y) due to the second catalyst at a fixed temperature level (x). Note that if $\beta_{3}>0$, then this would imply that the yield increases due to the second catalyst, while $\beta_{3}<0$ implies that the yield decreases due to the second catalyst.
(b) From the data given, we find $\hat{\beta}_{2}=0.41$ and $\operatorname{SE}\left(\hat{\beta}_{2}\right)=0.11$. Therefore, a 95% confidence interval for β_{2} is

$$
\hat{\beta}_{2} \pm t(0.025 ; 26) \mathrm{SE}\left(\hat{\beta}_{2}\right)=0.41 \pm(2.056)(0.11)=[0.184,0.636] .
$$

Note that the degrees of freedom are $d f=n-p-1=30-3-1=26$.
(c) (i) Since the vector of errors $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, we conclude that the vector of least squares estimates $\left[\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right]^{\prime}$ has a multivariate normal distribution. Hence, any uncorrelated components are necessarily independent. Thus, since $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=0$, we conclude that $\hat{\beta}_{1}$ and $\hat{\beta}_{3}$ are independent.
(c) (ii) When the standard temperature $(x=0)$ and catalyst $2(z=1)$ are used, the expected yield is

$$
\hat{\mu}=\mathbb{E}(y)=\hat{\beta}_{0}+\hat{\beta}_{3}=29.83-0.32=29.51
$$

Since the residual sum of squares is $\mathrm{SSE}=25.05$, we conclude that

$$
s^{2}=\frac{\mathrm{SSE}}{n-p-1}=\frac{25.05}{26} \doteq 0.96 .
$$

Thus, a 95% confidence interval for $\hat{\mu}$ is

$$
\hat{\mu} \pm t(0.025 ; 26) s=29.51 \pm(2.056) \sqrt{0.96}=[27.495,31.525] .
$$

Note that the degrees of freedom are $d f=n-p-1=30-3-1=26$.

