Stat 354 Fall 2018
Solutions to Assignment \#2

1. We know that $y_{1} \ldots, y_{n}$ are iid with $y_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$. Hence, the fact that $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are each linear combinations of y_{1}, \ldots, y_{n} (in other words, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are linear combinations of independent normal random variables), namely

$$
\hat{\beta}_{0}=\sum_{i=1}^{n} k_{i} y_{i} \quad \text { where } \quad k_{i}=\frac{1}{n}-\frac{\bar{x}\left(x_{i}-\bar{x}\right)}{s_{x x}}
$$

and

$$
\hat{\beta}_{1}=\sum_{i=1}^{n} c_{i} y_{i} \quad \text { where } \quad c_{i}=\frac{x_{i}-\bar{x}}{s_{x x}}
$$

implies that

$$
\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]
$$

has a multivariate normal distribution. We showed in class that

$$
\hat{\beta}_{0} \sim \mathcal{N}\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}}\right)\right)
$$

and

$$
\hat{\beta}_{1} \sim \mathcal{N}\left(\beta_{1}, \frac{\sigma^{2}}{s_{x x}}\right)
$$

Therefore, the final step is to determine $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$. We begin by observing that

$$
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\operatorname{Cov}\left(\sum_{i=1}^{n} k_{i} y_{i}, \sum_{i=1}^{n} c_{i} y_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} k_{j} \operatorname{Cov}\left(y_{i}, y_{j}\right)=\sum_{i=1}^{n} c_{i} k_{i} \operatorname{Var}\left(y_{i}\right)=\sigma^{2} \sum_{i=1}^{n} c_{i} k_{i}
$$

since $\operatorname{Cov}\left(y_{i}, y_{j}\right)=0$ if $i \neq j$ and $\operatorname{Var}\left(y_{i}\right)=\sigma^{2}$. We now observe that
$\sum_{i=1}^{n} c_{i} k_{i}=\sum_{i=1}^{n} c_{i} k_{i}=\sum_{i=1}^{n}\left(\frac{1}{n}-\frac{\bar{x}\left(x_{i}-\bar{x}\right)}{s_{x x}}\right)\left(\frac{x_{i}-\bar{x}}{s_{x x}}\right)=\frac{1}{n s_{x x}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)-\frac{\bar{x}}{s_{x x}^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=-\frac{\bar{x}}{s_{x x}}$
so that

$$
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=-\frac{\sigma^{2} \bar{x}}{s_{x x}} .
$$

Putting everything together implies

$$
\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}}\right) & -\frac{\sigma^{2} \bar{x}}{s_{x x}} \\
-\frac{\sigma^{2} \bar{x}}{s_{x x}} & \frac{\sigma^{2}}{s_{x x}}
\end{array}\right]\right) .
$$

(3.1) If

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
3 & 2 & 2 \\
2 & 1 & 4
\end{array}\right]
$$

then

$$
A^{\prime}=\left[\begin{array}{lll}
2 & 3 & 2 \\
0 & 2 & 1 \\
1 & 2 & 4
\end{array}\right] \quad \text { and } A^{\prime} A=\left[\begin{array}{lll}
2 & 3 & 2 \\
0 & 2 & 1 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 1 \\
3 & 2 & 2 \\
2 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
17 & 8 & 16 \\
8 & 5 & 8 \\
16 & 8 & 21
\end{array}\right]
$$

We find

$$
\operatorname{tr}(A)=2+2+4=8 \quad \text { and } \quad \operatorname{tr}\left(A^{\prime} A\right)=17+5+21=43
$$

as well as

$$
\operatorname{det}(A)=2 \cdot 2 \cdot 4+0+1 \cdot 3 \cdot 1-1 \cdot 2 \cdot 2-0-2 \cdot 1 \cdot 2=11
$$

and

$$
\operatorname{det}\left(A^{\prime} A\right)=17 \cdot 5 \cdot 21+8 \cdot 8 \cdot 16+16 \cdot 8 \cdot 8-16 \cdot 5 \cdot 16-8 \cdot 8 \cdot 17-21 \cdot 8 \cdot 8=121
$$

(3.2) If

$$
\mathbf{X}=\left[\begin{array}{lll}
1 & -1 & -1 \\
1 & +1 & -1 \\
1 & -1 & +1 \\
1 & +1 & +1
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
3 \\
5 \\
7
\end{array}\right]
$$

then

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & +1 & -1 & +1 \\
-1 & -1 & +1 & +1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & +1 & -1 \\
1 & -1 & +1 \\
1 & +1 & +1
\end{array}\right]=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

and

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{ccc}
1 / 4 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]
$$

We also find

$$
\mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & +1 & -1 & +1 \\
-1 & -1 & +1 & +1
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
19 \\
1 \\
5
\end{array}\right]
$$

and so

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{ccc}
1 / 4 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]\left[\begin{array}{c}
19 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{c}
19 / 4 \\
1 / 4 \\
5 / 4
\end{array}\right]
$$

Note that both $\mathbf{X}^{\prime} \mathbf{X}$ and $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ are diagonal matrices.
(3.3) If

$$
\mathbf{X}=\left[\begin{array}{lll}
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22} \\
1 & x_{31} & x_{32} \\
1 & x_{41} & x_{42} \\
1 & x_{51} & x_{52}
\end{array}\right]
$$

then

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
x_{11} & x_{21} & x_{31} & x_{41} & x_{51} \\
x_{12} & x_{22} & x_{32} & x_{42} & x_{52}
\end{array}\right]\left[\begin{array}{ccc}
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22} \\
1 & x_{31} & x_{32} \\
1 & x_{41} & x_{42} \\
1 & x_{51} & x_{52}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \sum x_{i 1} & \sum x_{i 2} \\
\sum x_{i 1} & \sum x_{i 1}^{2} & \sum x_{i 1} x_{i 2} \\
\sum x_{i 2} & \sum x_{i 1} x_{i 2} & \sum x_{i 2}^{2}
\end{array}\right] .
$$

(3.4) If

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

then $\operatorname{det}(A)=(2)(2)-(-1)(-1)=3$ and

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right] .
$$

We now find

$$
A-\lambda I=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
2 /-\lambda & -1 \\
-1 & 2-\lambda
\end{array}\right]
$$

so that

$$
\operatorname{det}(A-\lambda I)=(2-\lambda)^{2}-(1)^{2}=(1-\lambda)(3-\lambda)
$$

(The difference of perfect squares is easy to factor.) Thus, there are two eigenvalues, namely

$$
\lambda_{1}=1 \quad \text { and } \quad \lambda_{2}=3 .
$$

The corresponding eigenvectors are found by row reduction. For $\lambda_{1}=1$,

$$
\left[A-\lambda_{1} I \mid 0\right]=\left[\begin{array}{cc|c}
1 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and for $\lambda_{2}=3$,

$$
\left[A-\lambda_{2} I \mid 0\right]=\left[\begin{array}{ll|l}
-1 & -1 & 0 \\
-1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since the eigenvectors corresponding to a given eigenvalue λ lie in the nullspace of $[A-\lambda I]$, we conclude that a basis for the eigenspace corresponding to λ_{1} is

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and a basis for the eigenspace corresponding to λ_{2} is

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The normalized eigenvectors are therefore

$$
\mathbf{p}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \quad \text { and } \quad \mathbf{p}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] .
$$

(3.6) If

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 4 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

then $\operatorname{det}(A)=3$ and

$$
A^{-1}=\left[\begin{array}{ccc}
4 / 3 & -1 / 3 & -4 / 3 \\
-1 / 3 & 1 / 3 & 1 / 3 \\
-4 / 3 & 1 / 3 & 7 / 3
\end{array}\right]
$$

(3.12) Let $\mathbf{z}=\left[z_{1}, z_{2}, z_{3}\right]^{\prime}$ be the random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix V. If $\mathbf{y}=\left[y_{1}, y_{2}, y_{3}\right]^{\prime}$ and

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & -1 \\
2 & 1 & 1
\end{array}\right]
$$

then $\mathbf{z}=A \mathbf{y}-[0,0,7]^{\prime}$. Hence, the mean vector of \mathbf{y} is

$$
\mathbb{E}(\mathbf{y})=A \boldsymbol{\mu}-\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & -1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right] .
$$

The covariance matrix of \mathbf{y} is

$$
V(\mathbf{y})=A V A^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & -1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & 1 \\
2 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
11 & 6 & 17 \\
6 & 6 & 12 \\
17 & 12 & 29
\end{array}\right]
$$

Let $\mathbf{w}=[1,1,1]^{\prime}$ so that

$$
y=\frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right)=\frac{1}{3} \mathbf{w}^{\prime} \mathbf{y} .
$$

Therefore,

$$
\mathbb{E}(y)=\frac{1}{3} \mathbb{E}\left(\mathbf{w}^{\prime} \mathbf{y}\right)=\frac{1}{3} \mathbf{w}^{\prime} \mathbb{E}(\mathbf{y})=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right]=\frac{7}{3}
$$

and

$$
V(y)=\frac{1}{9} V\left(\mathbf{w}^{\prime} \mathbf{y}\right)=\frac{1}{9} \mathbf{w}^{\prime} V(\mathbf{y}) \mathbf{w}=\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
11 & 6 & 17 \\
6 & 6 & 12 \\
17 & 12 & 29
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{116}{9} .
$$

(3.15) We begin by noting that

$$
A-\lambda I=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
1-\lambda & \rho \\
\rho & 1-\lambda
\end{array}\right]
$$

so that

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)^{2}-\rho^{2}=(1-\lambda+\rho)(1-\lambda-\rho) .
$$

(The difference of perfect squares is easy to factor.) Thus, there are two eigenvalues, namely

$$
\lambda_{1}=1+\rho \quad \text { and } \quad \lambda_{2}=1-\rho .
$$

The corresponding eigenvectors are found by row reduction. For $\lambda_{1}=1+\rho$,

$$
\left[A-\lambda_{1} I \mid 0\right]=\left[\begin{array}{cc|c}
-\rho & \rho & 0 \\
\rho & -\rho & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and for $\lambda_{2}=1-\rho$,

$$
\left[A-\lambda_{2} I \mid 0\right]=\left[\begin{array}{ll|l}
\rho & \rho & 0 \\
\rho & \rho & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since the eigenvectors corresponding to a given eigenvalue λ lie in the nullspace of $[A-\lambda I]$, we conclude that a basis for the eigenspace corresponding to λ_{1} is

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and a basis for the eigenspace corresponding to λ_{2} is

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The normalized eigenvectors are therefore

$$
\mathbf{p}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \quad \text { and } \quad \mathbf{p}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] .
$$

