Stat 354 Fall 2018
Solutions to Assignment \#1

1. (a) We showed in class that $\mathbb{E}\left(\hat{\beta}_{0}\right)=\beta_{0}$ and $\mathbb{E}\left(\hat{\beta}_{1}\right)=\beta_{1}$. This implies that

$$
\mathbb{E}\left(\hat{\mu}_{0}\right)=\mathbb{E}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)=\mathbb{E}\left(\hat{\beta}_{0}\right)+x_{0} \mathbb{E}\left(\hat{\beta}_{1}\right)=\beta_{0}+\beta_{1} x_{0}=\mu_{0}
$$

as required.

1. (b) We showed in class that $\hat{\beta}_{1}$ could be written in the form

$$
\hat{\beta}_{1}=\sum\left(\frac{x_{i}-\bar{x}}{s_{x x}}\right) y_{i}
$$

Therefore, we can express $\hat{\mu}_{0}$ as

$$
\begin{aligned}
\hat{\mu}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}+\hat{\beta}_{1} x_{0} & =\bar{y}+\hat{\beta}_{1}\left(x_{0}-\bar{x}\right) \\
& =\frac{1}{n}\left(\sum y_{i}\right)+\left(x_{0}-\bar{x}\right)\left[\sum\left(\frac{x_{i}-\bar{x}}{s_{x x}}\right) y_{i}\right] \\
& =\sum\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{s_{x x}}\right] y_{i}
\end{aligned}
$$

Since y_{1}, \ldots, y_{n} are independent with $\operatorname{Var}\left(y_{i}\right)=\sigma^{2}$, we conclude that

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\mu}_{0}\right) & =\operatorname{Var}\left(\sum\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{s_{x x}}\right] y_{i}\right) \\
& =\sum\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{s_{x x}}\right]^{2} \operatorname{Var}\left(y_{i}\right) \\
& =\sum\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{s_{x x}}\right]^{2} \sigma^{2} \\
& =\sigma^{2} \sum\left[\frac{1}{n^{2}}+2 \frac{\left(x_{0}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{n s_{x x}}+\frac{\left(x_{0}-\bar{x}\right)^{2}\left(x_{i}-\bar{x}\right)^{2}}{s_{x x}^{2}}\right] \\
& =\sigma^{2}\left(\sum \frac{1}{n^{2}}\right)+2 \frac{\left(x_{0}-\bar{x}\right) \sigma^{2}}{n s_{x x}}\left[\sum\left(x_{i}-\bar{x}\right)\right]+\frac{\left(x_{0}-\bar{x}\right)^{2} \sigma^{2}}{s_{x x}^{2}}\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right] \\
& =\frac{\sigma^{2}}{n}+0+\frac{\left(x_{0}-\bar{x}\right)^{2} \sigma^{2}}{s_{x x}^{2}} \cdot s_{x x} \\
& =\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{s_{x x}}\right) \sigma^{2}
\end{aligned}
$$

as required.

1. (c) The easiest way to solve this problem is to substitute in $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$. Doing so yields

$$
\begin{aligned}
\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2} & =\sum\left(y_{i}-\bar{y}+\hat{\beta}_{1} \bar{x}-\hat{\beta}_{1} x_{i}\right)^{2} \\
& =\sum\left[\left(y_{i}-\bar{y}\right)-\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right]^{2} \\
& =\left[\sum\left(y_{i}-\bar{y}\right)^{2}\right]+\hat{\beta}_{1}^{2}\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right]-2 \hat{\beta}_{1}\left[\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)\right] \\
& =s_{y y}-\hat{\beta}_{1}^{2} s_{x x}+2 \hat{\beta}_{1} s_{x y} .
\end{aligned}
$$

If we now substitute in $\hat{\beta}_{1}=s_{x y} / s_{x x}$, we obtain

$$
s_{y y}-\hat{\beta}_{1}^{2} s_{x x}+2 \hat{\beta}_{1} s_{x y}=s_{y y}-\left(\frac{s_{x y}}{s_{x x}}\right)^{2} s_{x x}+2\left(\frac{s_{x y}}{s_{x x}}\right) s_{x y}=s_{y y}-\frac{s_{x y}^{2}}{s_{x x}}=s_{y y}-\hat{\beta}_{1}^{2} s_{x x}
$$

as required.
2. (a) Since y_{1}, \ldots, y_{n} are independent with $\mathbb{E}\left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i}$ and $\operatorname{Var}\left(y_{i}\right)=\sigma^{2}$, we conclude that $\mathbb{E}(\bar{y})=\beta_{0}+\beta_{1} \bar{x}$ and $\operatorname{Var}(\bar{y})=\sigma^{2} / n$. Therefore, we obtain
(i) $\mathbb{E}\left(y_{i}^{2}\right)=\operatorname{Var}\left(y_{i}\right)+\left[\mathbb{E}\left(y_{i}\right)\right]^{2}=\sigma^{2}+\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}$, and
(ii) $\mathbb{E}\left(\bar{y}^{2}\right)=\operatorname{Var}(\bar{y})+[\mathbb{E}(\bar{y})]^{2}=\frac{\sigma^{2}}{n}+\left(\beta_{0}+\beta_{1} \bar{x}\right)^{2}$.

Finally,
(iii) $\mathbb{E}\left(\hat{\beta}_{1}^{2}\right)=\operatorname{Var}\left(\hat{\beta}_{1}^{2}\right)+\left[\mathbb{E}\left(\hat{\beta}_{1}\right)\right]^{2}=\frac{\sigma^{2}}{s_{x x}}+\beta_{1}^{2}$ using facts that were proved in class (as noted in Problem 1).
2. (b) In order to solve this problem we use the facts (as proved in class) that

$$
s_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}=\left(\sum y_{i}^{2}\right)-n \bar{y}^{2} \text { and } s_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\left(\sum x_{i}^{2}\right)-n \bar{x}^{2} .
$$

This implies that

$$
\begin{aligned}
\mathbb{E}\left(s_{y y}\right) & =\mathbb{E}\left[\left(\sum y_{i}^{2}\right)-n \bar{y}^{2}\right] \\
& =\left[\sum \mathbb{E}\left(y_{i}^{2}\right)\right]-n \mathbb{E}\left(\bar{y}^{2}\right) \\
& =\left[\sum\left(\sigma^{2}+\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}\right)\right]-n\left[\frac{\sigma^{2}}{n}+\left(\beta_{0}+\beta_{1} \bar{x}\right)^{2}\right] \\
& =\left(\sum \sigma^{2}\right)+\left[\sum\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}\right]-\sigma^{2}-n\left(\beta_{0}+\beta_{1} \bar{x}\right)^{2} \\
& =(n-1) \sigma^{2}+\left[\sum\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}\right]-n\left(\beta_{0}+\beta_{1} \bar{x}\right)^{2} \\
& =(n-1) \sigma^{2}+\left[\sum\left(\beta_{0}^{2}+2 \beta_{0} \beta_{1} x_{i}+\beta_{1}^{2} x_{i}^{2}\right)\right]-n\left(\beta_{0}^{2}+2 \beta_{0} \beta_{1} \bar{x}+\beta_{1}^{2} \bar{x}^{2}\right) \\
& =(n-1) \sigma^{2}+\left[\left(\sum \beta_{0}^{2}\right)-n \beta_{0}^{2}\right]+2 \beta_{0} \beta_{1}\left[\left(\sum x_{i}\right)-n \bar{x}\right]+\beta_{1}^{2}\left[\left(\sum x_{i}^{2}\right)-n \bar{x}^{2}\right] \\
& =(n-1) \sigma^{2}+0+0+\beta_{1}^{2}\left[\left(\sum x_{i}^{2}\right)-n \bar{x}^{2}\right] \\
& =(n-1) \sigma^{2}+\beta_{1}^{2}\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right] \\
& =(n-1) \sigma^{2}+\beta_{1}^{2} s_{x x}
\end{aligned}
$$

as required.
2. (c) Using 1.(c) along with 2.(a)(iii) and 2.(b), we now find

$$
\begin{aligned}
\mathbb{E}\left[\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}\right]=\mathbb{E}\left(s_{y y}-\hat{\beta}_{1}^{2} s_{x x}\right) & =\mathbb{E}\left(s_{y y}\right)-s_{x x} \mathbb{E}\left(\hat{\beta}_{1}^{2}\right) \\
& =(n-1) \sigma^{2}+\beta_{1}^{2} s_{x x}-s_{x x}\left(\frac{\sigma^{2}}{s_{x x}}+\beta_{1}^{2}\right) \\
& =(n-1) \sigma^{2}+\beta_{1}^{2} s_{x x}-\sigma^{2}-\beta_{1}^{2} s_{x x} \\
& =(n-2) \sigma^{2}
\end{aligned}
$$

as required.
2. (d) It now follows from 2.(c) that

$$
\mathbb{E}\left(\hat{\sigma}^{2}\right)=\mathbb{E}\left[\frac{1}{n} \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}\right]=\frac{1}{n} \mathbb{E}\left[\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}\right]=\frac{1}{n} \cdot(n-2) \sigma^{2}=\left(\frac{n-2}{n}\right) \sigma^{2}
$$

as required.
3. As shown in class, the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x+\epsilon$ leads to the normal equations

$$
\begin{aligned}
n \beta_{0}+\beta_{1} \sum x_{i} & =\sum y_{i} \\
\beta_{0} \sum x_{i}+\beta_{2} \sum x_{i}^{2} & =\sum x_{i} y_{i}
\end{aligned}
$$

which have unique solution $\hat{\beta}_{0}, \hat{\beta}_{1}$. Replacing x_{i} by $k x_{i}$ leads to the new simple linear regression model $y_{i}=\beta_{0}^{\text {new }}+\beta_{1}^{\text {new }}(k x)+\epsilon$. The corresponding normal equations are

$$
\begin{aligned}
n \beta_{0}^{\text {new }}+\beta_{1}^{\text {new }} \sum\left(k x_{i}\right) & =\sum y_{i} \\
\beta_{0}^{\text {new }} \sum\left(k x_{i}\right)+\beta_{1}^{\text {new }} \sum\left(k x_{i}\right)^{2} & =\sum\left(k x_{i}\right) y_{i}
\end{aligned}
$$

which have unique solution $\hat{\beta}_{0}^{\text {new }}, \hat{\beta}_{1}^{\text {new }}$. If we note that by factoring out appropriate factors of k, the second set of normal equations can be re-written as

$$
\begin{aligned}
n \beta_{0}^{\text {new }}+\left(k \beta_{1}^{\text {new }}\right) \sum x_{i} & =\sum y_{i} \\
\beta_{0}^{\text {new }} \sum x_{i}+\left(k \beta_{1}^{\text {new }}\right) \sum x_{i}^{2} & =\sum x_{i} y_{i}
\end{aligned}
$$

from which we immediately conclude that $\hat{\beta}_{0}^{\text {new }}=\hat{\beta}_{0}$ and $\hat{\beta}_{1}^{\text {new }}=k^{-1} \hat{\beta}_{1}$ as required.
4. (a) If $S(\beta)=\sum\left(y_{i}-\beta x_{i}\right)^{2}$, then

$$
S^{\prime}(\beta)=\frac{\mathrm{d}}{\mathrm{~d} \beta} S(\beta)=-2 \sum x_{i}\left(y_{i}-\beta x_{i}\right)
$$

The only critical point for $S(\beta)$ occurs when $S^{\prime}(\beta)=0$, namely at

$$
\hat{\beta}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
$$

Since $S(\beta)>0$ for all β, we conclude that $\hat{\beta}$ is, in fact, where the minimum of $S(\beta)$ occurs. Note that, equivalently, one could check that $S^{\prime \prime}(\hat{\beta})>0$.
4. (b) Since $\mathbb{E}\left(y_{i}\right)=\mathbb{E}\left(\beta x_{i}+\epsilon_{i}\right)=\beta x_{i}+\mathbb{E}\left(\epsilon_{i}\right)=\beta x_{i}$, we deduce that

$$
\mathbb{E}(\hat{\beta})=\mathbb{E}\left(\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}\right)=\frac{\sum x_{i} \mathbb{E}\left(y_{i}\right)}{\sum x_{i}^{2}}=\frac{\sum x_{i}\left(\beta x_{i}\right)}{\sum x_{i}^{2}}=\beta \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}}=\beta
$$

so that $\hat{\beta}$ is, in fact, an unbiased estimator of β.
4. (c) The fact that $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent implies that y_{1}, \ldots, y_{n} are independent. Therefore, since $\operatorname{Var}\left(y_{i}\right)=\operatorname{Var}\left(\beta x_{i}+\epsilon_{i}\right)=\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$, we deduce that

$$
\operatorname{Var}(\hat{\beta})=\operatorname{Var}\left(\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}\right)=\frac{\sum x_{i}^{2} \operatorname{Var}\left(y_{i}\right)}{\left(\sum x_{i}^{2}\right)^{2}}=\frac{\sum x_{i}^{2} \sigma^{2}}{\left(\sum x_{i}^{2}\right)^{2}}=\sigma^{2} \frac{\sum x_{i}^{2}}{\left(\sum x_{i}^{2}\right)^{2}}=\frac{\sigma^{2}}{\sum x_{i}^{2}}
$$

as required.

