Stat 354 Fall 2018
Assignment \#2
This assignment is due at the beginning of class on Friday, October 19, 2018. Your solutions will be graded based on both correctness and exposition. In particular, neatness and grammar count. You must write out solutions using full sentences (including capital letters to start sentences and periods to end them) and no abbreviations. That is, symbols such as \therefore and \Rightarrow are forbidden; write out the full words therefore and implies in their place.

1. Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \ldots, n$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent and identically distributed with $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Define

$$
\bar{x}=\frac{1}{n} \sum x_{i}, \quad \bar{y}=\frac{1}{n} \sum y_{i}, s_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}, s_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}, s_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

so that the least squares estimators of β_{1}, β_{0} as derived in class are

$$
\hat{\beta}_{1}=\frac{s_{x y}}{s_{x x}} \quad \text { and } \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

respectively. Determine the distribution of the random vector

$$
\beta=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right] .
$$

Hint. The result of Problem 1 from Assignment \#1 will likely prove helpful for solving this problem.
2. The following Exercises are on pages $83-86$ of the textbook.

- Exercise 3.1
- Exercise 3.2
- Exercise 3.3
- Exercise 3.4 (a), (b)
- Exercise 3.6 (a), (b)
- Exercise 3.12
- Exercise 3.15 (a), (b)

