Stat 354 Fall 2018
Assignment \#1
This assignment is due at the beginning of class on Friday, September 28, 2018. Your solutions will be graded based on both correctness and exposition. In particular, neatness and grammar count. You must write out solutions using full sentences (including capital letters to start sentences and periods to end them) and no abbreviations. That is, symbols such as \therefore and \Rightarrow are forbidden; write out the full words therefore and implies in their place.

1. Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \ldots, n$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent with common mean $\mathbb{E}\left(\epsilon_{i}\right)=0$ and common variance $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$ for all i. Define

$$
\bar{x}=\frac{1}{n} \sum x_{i}, \quad \bar{y}=\frac{1}{n} \sum y_{i}, s_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}, s_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}, s_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

so that the least squares estimators of β_{1}, β_{0} as derived in class are

$$
\hat{\beta}_{1}=\frac{s_{x y}}{s_{x x}} \quad \text { and } \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

respectively. Finally, set $\mu_{0}=\beta_{0}+\beta_{1} x_{0}$ and $\hat{\mu}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}$.
(a) Verify that $\mathbb{E}\left(\hat{\mu}_{0}\right)=\mu_{0}$.
(b) Verify that

$$
\operatorname{Var}\left(\hat{\mu}_{0}\right)=\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{s_{x x}}\right) \sigma^{2}
$$

(c) Verify that

$$
\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}=s_{y y}-\hat{\beta}_{1}^{2} s_{x x}=s_{y y}-\frac{s_{x y}^{2}}{s_{x x}} .
$$

2. Consider the simple linear regression model defined in Problem 1. The purpose of this problem is to prove that if

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2},
$$

then

$$
\mathbb{E}\left(\hat{\sigma}^{2}\right)=\left(\frac{n-2}{n}\right) \sigma^{2} .
$$

(a) Recall that if z is a random variable, then $\mathbb{E}\left(z^{2}\right)=\operatorname{Var}(z)+[\mathbb{E}(z)]^{2}$. Use this fact to prove the following identities:
(i) $\mathbb{E}\left(y_{i}^{2}\right)=\sigma^{2}+\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}$,
(ii) $\mathbb{E}\left(\bar{y}^{2}\right)=\frac{\sigma^{2}}{n}+\left(\beta_{0}+\beta_{1} \bar{x}\right)^{2}$,
(iiii) $\mathbb{E}\left(\hat{\beta}_{1}^{2}\right)=\frac{\sigma^{2}}{s_{x x}}+\beta_{1}^{2}$.
(b) Verify that $\mathbb{E}\left(s_{y y}\right)=(n-1) \sigma^{2}+\beta_{1}^{2} s_{x x}$.
(c) Use part (c) of the previous problem to verify

$$
\mathbb{E}\left[\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}\right]=(n-2) \sigma^{2} .
$$

(d) Deduce

$$
\mathbb{E}\left(\hat{\sigma}^{2}\right)=\left(\frac{n-2}{n}\right) \sigma^{2} .
$$

3. (Scale Invariance of the SLR model.) Consider the simple linear regression model defined in Problem 1. Suppose that we replace x_{i} by $k x_{i}$ where $k \neq 0$ is a constant so that we have the new model

$$
y_{i}=\beta_{0}^{\text {new }}+\beta_{1}^{\text {new }}\left(k x_{i}\right)+\epsilon_{i}, \quad i=1, \ldots, n .
$$

(a) Carefully verify that $\hat{\beta}_{1}^{\text {new }}=k^{-1} \hat{\beta}_{1}$.
(b) Carefully verify that $\hat{\beta}_{0}^{\text {new }}=\hat{\beta}_{0}$.
4. The purpose of this problem is to derive a model of regression through the origin; i.e., where it is known a priori that the intercept is zero.

Suppose that we observe data $\left(x_{i}, y_{i}\right), i=1, \ldots, n$, and postulate that it is appropriate to describe the relationship between x and y by the regression model $y=\beta x+\epsilon$. In particular, this assumes that

$$
y_{i}=\beta x_{i}+\epsilon_{i}, \quad i=1, \ldots, n,
$$

where β is a parameter and $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent with common mean $\mathbb{E}\left(\epsilon_{i}\right)=0$ and common variance $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$.
(a) Let $S(\beta)=\sum \epsilon_{i}^{2}=\sum\left(y_{i}-\beta x_{i}\right)^{2}$. Prove that the minimum of $S(\beta)$ occurs at

$$
\hat{\beta}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} .
$$

(b) Verify that $\hat{\beta}$ is an unbiased estimator of β.
(c) Verify that

$$
\operatorname{Var}(\hat{\beta})=\frac{\sigma^{2}}{\sum x_{i}^{2}}
$$

