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At the present time, frequentist ideas dominate most statistics undergraduate programs, and the
exposure to Bayesian ideas in undergraduate statistics is very limited. There are historical
reasons for this frequentist dominance. Efron (1986) concluded that frequentists had captured the
high ground of objectivity (p. 4). Bayesian methods have superior performance, often even
outperforming frequentist procedures when evaluated under frequentist criteria. In the past,
Bayesian methods were of limited practical use, since analytic solutions for the Bayesian
posterior distributions were only possible in a few cases, and the numerical calculation of the
posterior often was not feasible because of lack of computer power. Recent developments in
computing power, and the development of Markov chain methods for sampling from the posterior
have made Bayesian methods possible, even in very complicated models. It is clearly
unsatisfactory for our profession that most of our students are not being introduced to the best
methods available. In this paper I make a proposal for how our profession should deal with this
challenge, by giving my answers to the journalistic “who, what, where, when, why, and how”
questions about the place of Bayesian Statistics in undergraduate statistical education.

INTRODUCTION

We need a strategy for statistical education in the new millennium. David Moore (2001)
noted that “although the discipline of statistics is healthy, its place in academe is not”(p.1). He
contends that “our future depends strongly on achieving a more prominent place in undergraduate
education beyond the first methods course”.

Professional statisticians continue to be in high demand by employers, in industry,
government, and education. The July 2001 issue of Amstat News has over 20 pages of
advertisements for professional statisticians at all levels, in health and other industries,
government, and educational institutions. Shettle and Gaddy (1998) found that in the US slightly
over half (55%) of individuals with doctorate degrees in statistics were employed in the academic
sector, with most of the remainder divided between the private sector (28%) and the government
sector (10%). The median salary levels were comparable to other doctoral professionals. Demets,
Woolson, Brooks and Qu (1998) conclude that while the supply of PhD statisticians seems to be
increasing, a low unemployment rate suggests the profession is not saturated, in contrast to some
other scientific fields. It is clear that there is a continuing demand for people with training in
statistics.

Approximately 50% of total statistics degrees awarded in the USA during 1995 were at
Masters level, and only about 33% at Bachelors level, (Iglewicz, 1998). Furthermore, from 1981
to 1995 the rate of increase in Bachelor degrees with statistics as a major (18%) was substantially
less than that for Masters degrees (58%) and Doctoral degrees (60%) in statistics. Clearly
statistics as a career option has low visibility to undergraduates. Yet, very large proportions of
undergraduates are required to take a service course in statistics. We need to enthuse the best
students in these service courses into taking further statistics courses. We aren’t doing that now.
This should not surprise us. As professional statisticians, we know Bayes methods have great
theoretical advantages, and that these advantages can now be realized in practice with the advent
of Markov chain Monte Carlo methods. I suggest that introducing Bayesian methods may be the
key to revitalizing our undergraduate programmes in statistics. My answers to the journalistic
questions on the place of Bayesian statistics posed in the title follow (but in a different order).

WHERE

Introduction to Bayesian Statistics should be an alternative to the standard Introduction to
Statistics first year service course. Most students only take one statistics course. This is our one
opportunity to engage them.



ICOTS6. 2002: Bolstad

WHAT

Introduction to Bayesian Statistics should to cover the same topics as our first year
service course in statistics. These include techniques for gathering data such as methods for
random sampling. The difference between observational studies and designed experiments should
be emphasized. The data gathering method can justify the probability model we use in the
analysis. Bayesian inferences should be made on the same parametric models as the service
course, binomial proportions, normal means, and differences between normal means.

WHO

Mathematically well prepared students should be encouraged to take the Introduction to
Bayesian Statistics course instead of the standard course. Bayesian statistics uses the rules of
probability to make inferences, and that requires dealing with formulae. The actual calculus used
is minimal. They only have to know that integrals represent areas under a curve. They don’t have
to evaluate them. Students who have previously passed the standard first year service course in
statistics previously should also be allowed in.

WHEN

Now. We know that Bayesian estimates and intervals perform very well, often
outperforming frequentist ones, even when evaluated using frequentist methods. What are we
waiting for?

WHY

If we continue to put forward less effective frequentist methods of inference in our
Introduction to Statistics courses, the decline of our discipline in the academic world will
continue. Statistical methods are being re-invented in information technology, eg. machine
learning, data mining, etc. These fields would be able to develop faster if there was more
involvement with statistics. Statistics departments and statistics within mathematics departments
are weak players in the contest for resources. We make heavy use of computing technology, but
we are usually resourced at a lower level than Computer Science. We don’t have a lock on
Bayesian ideas. If there is a significant development of teaching Bayesian inference in other
Departments, our profession will lose out. It is also true as statisticians, we can teach Bayesian
statistical inference better than others.

HOW
The ASA/Joint Curriculum Committee made three recommendations for any course
whose goal is to introduce the nature of statistics to beginning students. These are:

1. Emphasize the elements of statistical thinking.

2. Incorporate more data and concepts, fewer recipes and derivations. Wherever
possible automate computations and graphics.

3. Foster active learning.

INTRODUCTION TO BAYESIAN STATISTICS AT WAIKATO UNIVERSITY

I have designed a one semester Introduction to Bayesian Statistics course that is
compatible with those recommendations. My main objectives are to cover the same topics that
would be in a frequentist introduction to statistics course, but to do the inference from a Bayesian
perspective. Any introductory statistics course must start with data gathering. We cover random
sampling from a real population, the difference between observational studies and designed
experiments, and basic experimental design concepts as randomisation, and pairing. Sound
methods for displaying and summarizing data are also covered. These topics take about six
lectures. Real data sets are used, including those gathered by the students themselves. Stigler
(1977) is a good source of historically interesting scientific data sets.

I use an integrated approach involving lectures, tutorials, and computing, often involving
small-scale Monte Carlo simulations. Each of the three strands approaches the topics from a
different path, which caters for students with differing learning styles. Each strand reinforces the



ICOTS6. 2002: Bolstad

others, and allows the students to learn to think statistically. The following examples illustrate the
integrated approach.

EXAMPLE 1: SAMPLING FROM A REAL POPULATION

Students understand intuitively that to get good estimates of population parameters, the
sample must be representative of the population. Random sampling gives a way to statistically
control for an unknown characteristic of the population. If the sample size is large enough, a
simple random sample drawn without replacement will be very close to being representative with
respect to that characteristic.

If we know a characteristic of the population, for instance the proportions of each ethnic
group, simple random sampling might give a sample that does not have each group represented in
the proper proportions. Stratified random sampling allows us to control for the known
characteristic by sampling each stratum in the proper proportion, while still controlling other
unknown characteristics by the random sampling within each stratum. We also discuss cluster
random sampling. Students understand that people in the same neighbourhood tend to be more
similar than people in different neighbourhoods, so cluster random sampling will be less efficient
for the same size sample.

These ideas are reinforced in a tutorial, where we have a population of 100 rods that are
divided into three “ethnic groups” based on colour, and we want to estimate the mean “income”
for the population of rods. The income for each rod is written on a flag attached to the rod. I have
developed a sampling table, which has the sampling frame for each of the sampling methods.
Students draw three random samples of size twenty, one using each type of random sampling. We
look at the random samples drawn by the class, and see how well each method represents “ethnic
group”. Each student summarizes and graphically displays his/her sample of incomes.

We further reinforce this in a computing assignment. I have written macros that allow the
students to draw 200 random samples of size 20 from the same population of 100 rods. They do a
small scale Monte Carlo study to evaluate how effective is each method for getting samples
representative with respect to “ethnic group”. They also can look at the distribution of the mean
incomes over the 200 samples. They compare these sampling distributions for the mean over the
three sampling methods, and see that the stratified sampling distribution is more concentrated
around the true population mean.

EXAMPLE 2: SEX, DRUGS AND ROCK & ROLL SURVEY

My Introduction to Bayesian Statistics class combines with the Introduction to Statistics
course for the “Sex, Drugs, and Rock & Roll” survey we have developed at Waikato University,
(Bolstad, Hunt, & McWhirter, 2001). This survey involves students using randomised response to
gather sensitive information about the class (eg number of sex partners, marijuana usage) without
anyone having to divulge their own specific information. We discuss other sex surveys such as
the Hite report that are not based on any sort of randomisation. Students readily understand how
there would be a temptation to either refuse to participate, or give false information if such a
survey is done in a traceable way. This allows us to discuss non-sampling errors, such as
interviewer bias, and non-responses due to refusal. The randomised response means there is no
reason for anyone to put in false information, and nearly everyone participates, although
participation is completely voluntary.

Because the incorrect answers are put in by a known random mechanism, we can use
statistical methods to get estimates about the population. I think this is perhaps the most
fundamental idea in statistics. Statistical methods for inference assume the data comes from a
known random structure. It is risky to use to statistical methods of inference, frequentist or
Bayesian, for data that arises any other way. In the tutorial we use the known random structure for
the data to obtain unbiased (frequentist) estimates of the proportions of students who have had i
sex partners for i =0, ...,5+, and the posterior distribution for the proportion who have previously
used marijuana.

We do the Bayesian analysis is in a computing assignment. We evaluate the posterior
distributions for the proportion of males and females who have had i sex partners for i =0, ...,5+,
and the posterior distribution for the proportion who have previously used marijuana. This is done
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numerically using a macro I have written to do the required integrations. We evaluate the
posterior distributions of the difference between the corresponding male and female proportions
and find Bayesian credible intervals for these differences. These intervals are used to see if there
is any relationship between gender and the number of sex partners.

EXAMPLE 3: REACTION TIME EXPERIMENT.

This tutorial involves students in the collection, analysis, and interpretation of data on the
reaction times for their two hands. The student first determines a normal prior for their mean
reaction time, by matching moments with their prior belief. Each student performs an experiment
where his/her partner holds a ruler between the subjects thumb and fingers, then drops it without
warning. The distance the ruler drops before it is caught is measured, and converted to a reaction
time. The experiment is performed ten times for each hand. The posterior distribution of the mean
reaction time is found for each hand. The posterior distribution of the difference between means
of the dominant hand and the non-dominant hand is calculated. This is used to test the hypothesis
Hy:p,—pn,=20 vs. H :pu,—u, <0

by calculating the posterior probability of the null hypothesis. The student uses this test
to determine if their dominant hand has a shorter reaction time.

EXAMPLE 4: COMPARISON OF BAYESIAN AND FREQUENTIST ESTIMATORS

In this computing assignment, each student runs a small scale Monte Carlo simulation to
compare the performance of the usual frequentist and Bayesian estimators of n in terms of mean
square. 5000 random samples of size 10 are taken from a binomial distribution with success
probability w. Two estimators are calculated on each sample, the proportion of successes
(frequentist), and Posterior mean using uniform prior (Bayesian). The mean and variance of the
5000 random samples are calculated. The difference between the mean and the true value gives
the bias of each of the estimators. The bias and variance are combined into the mean square of the
estimator, which measures the average squared distance from the true value. These biases and
mean squares are calculated for t = .1, .2, ..., .9, and the points plotted and joined. Students then
are asked about the bias of each of the two estimators, and to determine over which range the
Bayesian estimator is closer, on average, than the frequentist estimator.

INFERENCE IN THE COURSE

Bayesian statistics uses probability to make inferences. We use the probability axioms to
develop probability on events. The conditional probability of an event B given an event A4 is
developed from the reduced universe given the event 4 has occurred. I like to use a Venn diagram
(see Figure 1.) to illustrate Bayes theorem.

U 4 U U.=4
B, | ANB
B, ANB,
B, ANB,

Figure 1. Venn Digram illustrating Baye’s Theorem

We see that the posterior probability of B4 equals their joint probability divided by the
marginal probability of 4 which is just the sum of the joint probabilities summed over all i. This
scales up the probabilities so the probability of the reduced universe equals one. Although the
formula for conditional probability is symmetric for events 4 and B, we don’t consider the events
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symmetrically. We have a prior belief that event B has occurred (its marginal probability). We use
the analogous conditional probability formulae for 4 given B in the multiplication rule to find the
joint probability, which is plugged into the formulae for the conditional probability of B given A4,
which is called the posterior probability of B.

Each of the joint probabilities are found by multiplying the prior probability of B; times
the conditional probability of A|B;

Then we go to the joint random variable case, where the discrete random variable X
corresponds to an unobservable parameter and the Y=); random variable is observed. The
posterior distribution of X given Y=y, is found by dividing each joint probability of X=x;

and Y=y, by the sum of the joint probabilities summed over all i. The joint probabilities
are found by multiplying the prior distribution by the corresponding probability of observing that
particular value y; given each of the possible values x;, P(Y=y; | X=x; ). We see this follows the
same pattern as Bayes theorem for events given above. The probability of observing that
particular value ); as a function of the possible values of X is called the likelihood function.
Posterior is proportional to prior times likelihood.

When the unobservable parameter random variable X is continuous, the posterior
distribution of X given Y=y, is observed is found by dividing each joint density value f(x,y,»s) by
the integral of the joint density values integrated over all values x. Each value of the joint density
is found by multiplying the prior density at x by the likelihood function, the corresponding
conditional probability density of observing v, given that value x.

Bayesian inference methods are developed for the same models as in a standard
introductory course: (binomial) proportions, normal mean, difference between normal
means, difference between proportions, and simple linear regression. Subjective priors
are chosen from the conjugate family by matching moments. The importance of graphing
the prior to make sure that it reasonably reflects your belief is emphasized. The
equivalent sample size is used to prevent students using a prior that is too precise relative to
the sample size. Flat priors are used to represent prior ignorance. We demonstrate that using any
reasonable prior doesn't change the posterior very much.

We use the posterior mean as an estimator. We show it has excellent characteristics when
averaged over the sample space and performs better than the corresponding frequentist estimator
in terms of mean square over the most of the possible parameter values. We introduce credible
intervals for the parameter and contrast their useful interpretation with the backwards
interpretation of the corresponding frequentist confidence interval. Hypothesis testing is well
entrenched into science, so we feel we have to introduce it, but in a Bayesian manner. One-sided
tests are performed by rejecting the null hypothesis whenever the posterior probability of the null
hypothesis is below the level of significance. We test the credibility of a point null hypothesis
versus a two-sided alternative by looking at whether the null value lies inside the corresponding
credible interval.

We introduce the Student's t distribution as an approximation to be used when the
variance is estimated form the sample. The idea of marginalization is introduced, but the
calculations are beyond the level that I wish to go in an introductory class. The only place where
we do marginalize is when we find the predictive distribution of a new observation by
marginalizing out the parameter.

SUMMARY

I have taught this course several times at the University of Waikato over the past few
years, and have always got good results. The students do understand the key ideas of Bayesian
inference, and appreciate that it can give better performance than the corresponding frequentist
methods. They get a good understanding the importance of randomisation in the gathering of data,
and elementary data analysis. My experience with this course, along with others (Berry, 1997)
and (Albert, 1997) show that an Introduction to Bayesian Statistics Course can be constructed that
conforms to the ASA/Joint Curriculum recommendations, and it is a feasible alternative to
standard Introduction to Statistics courses taught from the frequentist perspective. Good students
not only cope with the direct use of probability inherent in Bayesian inference, they can
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understand that frequentist inference is backwards by comparison. They realize that Bayesian
inferences are often better than frequentist ones, even when evaluated by frequentist ideas.

I believe that having an Introduction to Bayesian Statistics available to well prepared
students as an alternative to the standard Introduction to Statistics course is essential to the future
of our field. We can no longer afford not to teach the best prepared students the best methods
available

REFERENCES

Albert, J. (1997). Teaching Bayes’ rule: A data oriented approach. The American Statistician
51(3),247-253.

Berry, D. (1997). Teaching elementary Bayesian statistics with real applications in science. The
American Statistician 51(3), 241-246.

Bolstad, W.M., Hunt, L.A., & McWhirter, J.L. (2001). Sex, drugs, and rock & roll survey in a
first-year service course in statistics. The American Statistician, 55(2), 145-149.

Demets, D. L., Woolson, R., Brooks, C., & Qu, R. (1998). Where the jobs are: A study of amstat
news job advertisements. The American Statistician 52(4), 303-307.

Efron, B. (1986). Why isn't everyone a Bayesian. The American Statistician 40( 1), 1-11.

Iglewicz, B. (1998). Selected information on the statistics profession. The American Statistician,
52(4), 289-294.

Moore, D.S. (2001). Undergraduate programs and the future of academic statistics. The American
Statistician, 55(1), 1-7.

Shettle, C., & Gaddy, C. (1998). The labour market for statisticians and other scientists. The
American Statistician 52(4), 295-302.

Stigler, S. M. (1977). Do robust estimators work with real data? The Annals of Statistics, 5(6),
1055-1098.



