1. By Bayes' theorem, we have

$$
P(\text { you have AIDS } \mid \text { test positive })=\frac{P(\text { test positive } \mid \text { you have AIDS }) \cdot P(\text { you have AIDS })}{P(\text { test positive })} .
$$

We now use the information given in the problem, but need to be careful about the wording. We are told that $P($ you have AIDS $)=1 / 10000=0.0001$ and $P($ test positive you have AIDS $)=0.99$. However, the 5% false positive means P (test positive|you do NOT have AIDS $)=0.05$. Therefore, we must calculate P (test positive) using the law of total probability. Thus,

$$
\begin{aligned}
& P \text { (test positive) } \\
& \quad=P(\text { test positive } \text { you have AIDS }) \cdot P(\text { you have AIDS }) \\
& \quad \quad+P(\text { test positive } y \text { you do NOT have AIDS }) \cdot P(\text { you do NOT have AIDS }) \\
& = \\
& =0.99 \cdot 0.0001+0.05 \cdot 0.9999 \\
& =0.050094
\end{aligned}
$$

so that

$$
P(\text { you have AIDS } \mid \text { test positive })=\frac{0.99 \times 0.0001}{0.050094}=\frac{1}{506} \approx 0.001976 .
$$

Notice that this answer is significantly lower than 99%. Are you surprised?
2. (a) In order to maximize the likelihood function, we attempt to maximize the log-likelihood function

$$
\ell(\theta)=\left(\sum y_{i}\right) \log \theta-n \theta-\log y!.
$$

We find that

$$
\ell^{\prime}(\theta)=\frac{\mathrm{d}}{\mathrm{~d} \theta} \ell(\theta)=\frac{\sum y_{i}}{\theta}-n
$$

so that setting $\ell^{\prime}(\theta)=0$ implies that $\theta=\bar{y}$. Since

$$
\ell^{\prime \prime}(\theta)=-\frac{\sum y_{i}}{\theta^{2}}<0
$$

for all θ, the second derivative test implies

$$
\hat{\theta}_{\mathrm{MLE}}=\bar{Y} .
$$

2. (b) If we let

$$
u=\bar{y}, \quad q\left(y_{1}, \ldots y_{n}\right)=\frac{1}{\prod y_{i}!}, \quad \text { and } \quad p(u, \theta)=e^{n \theta} \theta^{n u}
$$

then since

$$
f\left(y_{1}, \ldots, y_{n} \mid \theta\right)=q\left(y_{1}, \ldots, y_{n}\right) \cdot p(u, \theta)
$$

we conclude from the factorization theorem that $U=\bar{Y}=\hat{\theta}_{\text {MLE }}$ is a sufficient statistic for the estimation of θ.
2. (c) Since

$$
\log f(y \mid \theta)=y \log (\theta)-y-\log (y!)
$$

we find

$$
\frac{\partial}{\partial \theta} \log f(y \mid \theta)=\frac{y}{\theta} \quad \text { and } \quad \frac{\partial^{2}}{\partial \theta^{2}} \log f(y \mid \theta)=-\frac{y}{\theta^{2}} .
$$

Thus,

$$
I(\theta)=-\mathbb{E}\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(Y \mid \theta)\right)=\frac{E(Y)}{\theta^{2}}=\frac{\theta}{\theta^{2}}=\frac{1}{\theta} .
$$

2. (d) Since $I(\theta)=\theta^{-1}$ we conclude that the Jeffreys prior for θ satisfies

$$
g(\theta) \propto \frac{1}{\sqrt{\theta}} .
$$

2. (e) If the observed data values are $\{1,0,2,4,3,0\}$, then the likelihood function is

$$
f\left(y_{1}=1, y_{2}=0, y_{3}=2, y_{4}=4, y_{5}=3, y_{6}=0 \mid \theta\right)=\frac{e^{-6 \theta} \theta^{1} \cdot \theta^{0} \cdot \theta^{2} \cdot \theta^{4} \cdot \theta^{3} \cdot \theta^{0}}{1!\cdot 0!\cdot 2!\cdot 4!\cdot 3!\cdot 0!}=\frac{e^{-6 \theta} \theta^{10}}{288} .
$$

Therefore, the resulting posterior satisfies

$$
f\left(\theta \mid y_{1}=1, y_{2}=0, y_{3}=2, y_{4}=4, y_{5}=3, y_{6}=0\right) \propto \frac{1}{\sqrt{\theta}} \cdot e^{-6 \theta} \theta^{10}=\theta^{9 \cdot 5} e^{-6 \theta} .
$$

Since

$$
\int_{0}^{\infty} \theta^{9.5} e^{-6 \theta} \mathrm{~d} \theta=\frac{\Gamma(10.5)}{6^{10.5}}
$$

we conclude that

$$
f\left(\theta \mid y_{1}=1, y_{2}=0, y_{3}=2, y_{4}=4, y_{5}=3, y_{6}=0\right)=\frac{6^{10.5}}{\Gamma(10.5)} \theta^{9.5} e^{-6 \theta}, \quad \theta>0 .
$$

The posterior mean is therefore

$$
\mathbb{E}\left(\theta \mid y_{1}=1, y_{2}=0, y_{3}=2, y_{4}=4, y_{5}=3, y_{6}=0\right)=\frac{10.5}{6}
$$

2. (f) The 90% equal-tailed credible interval is given by $[L, R]$ where L and R satisfy

$$
\int_{0}^{L} \frac{6^{10.5}}{\Gamma(10.5)} \theta^{9.5} e^{-6 \theta} \mathrm{~d} \theta=0.05
$$

and

$$
\int_{0}^{R} \frac{6^{10.5}}{\Gamma(10.5)} \theta^{9.5} e^{-6 \theta} \mathrm{~d} \theta=0.95
$$

Using R with the commands qgamma($0.05,10.5,6,1 / 6$) and qgamma ($0.95,10.5,6,1 / 6$) gives

$$
[0.9659421,2.722548]
$$

as the required credible interval.
3. Suppose that Y is a random variable with density $f(y \mid \theta)$ where θ is an unknown parameter. Suppose further that $q(\theta)$ is the prior density for θ corresponding to posterior density $f_{q}(\theta \mid y)$ so that

$$
f_{q}(\theta \mid y)=\frac{f(y \mid \theta) q(\theta)}{\int f(y \mid \theta) q(\theta) \mathrm{d} \theta}
$$

If $p(\theta)$ is chosen so that $g(\theta)=p(\theta) q(\theta)$ is a legitimate density, then the posterior corresponding to $g(\theta)$ is

$$
f(\theta \mid y)=\frac{f(y \mid \theta) g(\theta)}{\int f(y \mid \theta) g(\theta) \mathrm{d} \theta}=\frac{f(y \mid \theta) p(\theta) q(\theta)}{\int f(y \mid \theta) g(\theta) \mathrm{d} \theta} .
$$

However,

$$
q(\theta)=\frac{f_{q}(\theta \mid y) \int f(y \mid \theta) q(\theta) \mathrm{d} \theta}{f(y \mid \theta)}
$$

so that

$$
f(\theta \mid y)=\frac{\int f(y \mid \theta) q(\theta) \mathrm{d} \theta}{\int f(y \mid \theta) g(\theta) \mathrm{d} \theta} \cdot p(\theta) f_{q}(\theta \mid y)
$$

as required. Note that

$$
\frac{\int f(y \mid \theta) q(\theta) \mathrm{d} \theta}{\int f(y \mid \theta) g(\theta) \mathrm{d} \theta}
$$

is a constant in θ so that

$$
f(\theta \mid y) \propto p(\theta) f_{q}(\theta \mid y)
$$

4. We begin by writing

$$
f(y \mid \theta)=(\theta+1) \exp \{\theta \log y\}, \quad 0<y<1,
$$

which shows that $f(y \mid \theta)$ belongs to an exponential family.
Our guess for the conjugate prior is

$$
g(\theta) \propto(\theta+1)^{\delta} e^{\gamma \theta}, \quad \theta>-1
$$

where δ, γ are suitably chosen constants.
Note that in order for $g(\theta)$ to be a legitimate density, we must determine the value of

$$
\int_{-1}^{\infty}(\theta+1)^{\delta} e^{\gamma \theta} \mathrm{d} \theta
$$

Make the change-of-variables $u=\theta+1$ so that

$$
\int_{-1}^{\infty}(\theta+1)^{\delta} e^{\gamma \theta} \mathrm{d} \theta=\int_{0}^{\infty} u^{\delta} e^{\gamma(u-1)} \mathrm{d} u=e^{-\gamma} \int_{0}^{\infty} u^{\delta} e^{\gamma u} \mathrm{~d} u
$$

and notice that

$$
\int_{0}^{\infty} u^{\delta} e^{\gamma u} \mathrm{~d} u
$$

looks like a gamma function. This integral will converge provided that $\delta>-1$ and $\gamma<0$. Therefore, let $\alpha=\delta+1$ and $\beta=-\gamma$ with $\alpha>0$ and $\beta>0$ so that

$$
\int_{0}^{\infty} u^{\delta} e^{\gamma u} \mathrm{~d} u=\int_{0}^{\infty} u^{\alpha-1} e^{-\beta u} \mathrm{~d} u=\frac{\Gamma(\alpha)}{\beta^{\alpha}}=\frac{\Gamma(\delta+1)}{(-\gamma)^{\delta+1}}
$$

Thus,

$$
g(\theta)=e^{\gamma} \frac{(-\gamma)^{\delta+1}}{\Gamma(\delta+1)}(\theta+1)^{\delta} e^{\gamma \theta}=\frac{(-\gamma)^{\delta+1}}{\Gamma(\delta+1)}(\theta+1)^{\delta} e^{\gamma(\theta+1)}, \quad \theta>-1
$$

provided that $\delta>-1$ and $\gamma<0$.
The corresponding posterior satisfies

$$
f(\theta \mid y) \propto f(y \mid \theta) g(\theta) \propto(\theta+1)^{\delta+1} e^{(\gamma+\log y) \theta}, \quad \theta>-1
$$

provided that $\delta>-1$ and $\gamma<0$. Note that the posterior $f(\theta \mid y)$ has the same functional form as $g(\theta)$ which verifies that $g(\theta)$ is, in fact, a conjugate prior.

Furthermore, by mimicking the calculation done above, it is possible write the exact expression for $f(\theta \mid y)$, namely

$$
f(\theta \mid y)=e^{\gamma+\log y} \frac{(-\gamma-\log y)^{\delta+2}}{\Gamma(\delta+2)}(\theta+1)^{\delta+1} e^{(\gamma+\log y) \theta}=\frac{(-\gamma-\log y)^{\delta+2}}{\Gamma(\delta+2)}(\theta+1)^{\delta+1} e^{(\gamma+\log y)(\theta+1)}
$$

for $\theta>-1$ provided that $\delta>-1$ and $\gamma<0$ (and noting that $\log y<0$ since $0<y<1$).
5. This problem can be solved using the R macro binodp provided with the text by Bolstad. Entering the commands

```
> theta=c(0.10, 0.24, 0.33, 0.59, 0.68, 0.87)
> prior=c(0.27, 0.17, 0.12, 0.38, 0.05, 0.01)
> binodp(13,25,pi=theta,pi.prior=prior,ret=TRUE)
```

returns the following table

	Prior	Likelihood	Posterior
0.1	0.27	$3.965539 \mathrm{e}-08$	$7.641275 \mathrm{e}-07$
0.24	0.17	$2.877309 \mathrm{e}-04$	$5.544343 \mathrm{e}-03$
0.33	0.12	$2.810532 \mathrm{e}-03$	$5.415668 \mathrm{e}-02$
0.59	0.38	$4.680523 \mathrm{e}-02$	$9.018991 \mathrm{e}-01$
0.68	0.05	$1.992572 \mathrm{e}-03$	$3.839525 \mathrm{e}-02$
0.87	0.01	$1.981978 \mathrm{e}-07$	$3.819113 \mathrm{e}-06$

where, as noted in lab, the column labelled Likelihood should read Joint.
Thus, we can summarize the required posterior probabilities as

$$
\begin{aligned}
& f(\theta=0.10 \mid y=13)=0.0000007641275 \\
& f(\theta=0.24 \mid y=13)=0.005544343 \\
& f(\theta=0.33 \mid y=13)=0.05415668 \\
& f(\theta=0.59 \mid y=13)=0.9018991 \\
& f(\theta=0.68 \mid y=13)=0.03839525 \\
& f(\theta=0.01 \mid y=13)=0.000003819113
\end{aligned}
$$

Notice that the vast majority of posterior weight is given to $\theta=0.59$. This is not a surprise since there were $y=13$ successes in $n=25$ trials-we would expect the success probability to be about $1 / 2$.

