
Stat 352: Solutions to Assignment #3

1. By Bayes’ theorem, we have

P (you have AIDS|test positive) =
P (test positive|you have AIDS) · P (you have AIDS)

P (test positive)
.

We now use the information given in the problem, but need to be careful about the wording. We
are told that P (you have AIDS) = 1/10000 = 0.0001 and P (test positive|you have AIDS) = 0.99.
However, the 5% false positive means P (test positive|you do NOT have AIDS) = 0.05. Therefore,
we must calculate P (test positive) using the law of total probability. Thus,

P (test positive)
= P (test positive|you have AIDS) · P (you have AIDS)

+ P (test positive|you do NOT have AIDS) · P (you do NOT have AIDS)
= 0.99 · 0.0001 + 0.05 · 0.9999
= 0.050094

so that
P (you have AIDS|test positive) =

0.99× 0.0001
0.050094

=
1

506
≈ 0.001976.

Notice that this answer is significantly lower than 99%. Are you surprised?

2. (a) In order to maximize the likelihood function, we attempt to maximize the log-likelihood
function

`(θ) =
(∑

yi

)
log θ − nθ − log y!.

We find that
`′(θ) =

d
dθ

`(θ) =
∑

yi

θ
− n

so that setting `′(θ) = 0 implies that θ = y. Since

`′′(θ) = −
∑

yi

θ2
< 0

for all θ, the second derivative test implies

θ̂MLE = Y .

2. (b) If we let

u = y, q(y1, . . . yn) =
1∏
yi!

, and p(u, θ) = enθθnu,

then since
f(y1, . . . , yn|θ) = q(y1, . . . , yn) · p(u, θ)

we conclude from the factorization theorem that U = Y = θ̂MLE is a sufficient statistic for the
estimation of θ.
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2. (c) Since
log f(y|θ) = y log(θ)− y − log(y!)

we find
∂

∂θ
log f(y|θ) =

y

θ
and

∂2

∂θ2
log f(y|θ) = − y

θ2
.

Thus,

I(θ) = −E
(

∂2

∂θ2
log f(Y |θ)

)
=

E(Y )
θ2

=
θ

θ2
=

1
θ
.

2. (d) Since I(θ) = θ−1 we conclude that the Jeffreys prior for θ satisfies

g(θ) ∝ 1√
θ
.

2. (e) If the observed data values are {1, 0, 2, 4, 3, 0}, then the likelihood function is

f(y1 = 1, y2 = 0, y3 = 2, y4 = 4, y5 = 3, y6 = 0|θ) =
e−6θθ1 · θ0 · θ2 · θ4 · θ3 · θ0

1! · 0! · 2! · 4! · 3! · 0!
=

e−6θθ10

288
.

Therefore, the resulting posterior satisfies

f(θ|y1 = 1, y2 = 0, y3 = 2, y4 = 4, y5 = 3, y6 = 0) ∝ 1√
θ
· e−6θθ10 = θ9.5e−6θ.

Since ∫ ∞

0
θ9.5e−6θ dθ =

Γ(10.5)
610.5

we conclude that

f(θ|y1 = 1, y2 = 0, y3 = 2, y4 = 4, y5 = 3, y6 = 0) =
610.5

Γ(10.5)
θ9.5e−6θ, θ > 0.

The posterior mean is therefore

E(θ|y1 = 1, y2 = 0, y3 = 2, y4 = 4, y5 = 3, y6 = 0) =
10.5
6

.

2. (f) The 90% equal-tailed credible interval is given by [L,R] where L and R satisfy∫ L

0

610.5

Γ(10.5)
θ9.5e−6θ dθ = 0.05

and ∫ R

0

610.5

Γ(10.5)
θ9.5e−6θ dθ = 0.95.

Using R with the commands qgamma(0.05, 10.5, 6, 1/6) and qgamma(0.95, 10.5, 6, 1/6)
gives

[0.9659421 , 2.722548]

as the required credible interval.
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3. Suppose that Y is a random variable with density f(y|θ) where θ is an unknown parameter.
Suppose further that q(θ) is the prior density for θ corresponding to posterior density fq(θ|y) so
that

fq(θ|y) =
f(y|θ)q(θ)∫
f(y|θ)q(θ) dθ

.

If p(θ) is chosen so that g(θ) = p(θ)q(θ) is a legitimate density, then the posterior corresponding to
g(θ) is

f(θ|y) =
f(y|θ)g(θ)∫
f(y|θ)g(θ) dθ

=
f(y|θ)p(θ)q(θ)∫

f(y|θ)g(θ) dθ
.

However,

q(θ) =
fq(θ|y)

∫
f(y|θ)q(θ) dθ

f(y|θ)
so that

f(θ|y) =
∫

f(y|θ)q(θ) dθ∫
f(y|θ)g(θ) dθ

· p(θ)fq(θ|y)

as required. Note that ∫
f(y|θ)q(θ) dθ∫
f(y|θ)g(θ) dθ

is a constant in θ so that
f(θ|y) ∝ p(θ)fq(θ|y).

4. We begin by writing
f(y|θ) = (θ + 1) exp{θ log y}, 0 < y < 1,

which shows that f(y|θ) belongs to an exponential family.

Our guess for the conjugate prior is

g(θ) ∝ (θ + 1)δeγθ, θ > −1,

where δ, γ are suitably chosen constants.

Note that in order for g(θ) to be a legitimate density, we must determine the value of∫ ∞

−1
(θ + 1)δeγθ dθ.

Make the change-of-variables u = θ + 1 so that∫ ∞

−1
(θ + 1)δeγθ dθ =

∫ ∞

0
uδeγ(u−1) du = e−γ

∫ ∞

0
uδeγu du,

and notice that ∫ ∞

0
uδeγu du

looks like a gamma function. This integral will converge provided that δ > −1 and γ < 0. Therefore,
let α = δ + 1 and β = −γ with α > 0 and β > 0 so that∫ ∞

0
uδeγu du =

∫ ∞

0
uα−1e−βu du =

Γ(α)
βα

=
Γ(δ + 1)
(−γ)δ+1

.
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Thus,

g(θ) = eγ (−γ)δ+1

Γ(δ + 1)
(θ + 1)δeγθ =

(−γ)δ+1

Γ(δ + 1)
(θ + 1)δeγ(θ+1), θ > −1,

provided that δ > −1 and γ < 0.

The corresponding posterior satisfies

f(θ|y) ∝ f(y|θ)g(θ) ∝ (θ + 1)δ+1e(γ+log y)θ, θ > −1,

provided that δ > −1 and γ < 0. Note that the posterior f(θ|y) has the same functional form as
g(θ) which verifies that g(θ) is, in fact, a conjugate prior.

Furthermore, by mimicking the calculation done above, it is possible write the exact expression for
f(θ|y), namely

f(θ|y) = eγ+log y (−γ − log y)δ+2

Γ(δ + 2)
(θ + 1)δ+1e(γ+log y)θ =

(−γ − log y)δ+2

Γ(δ + 2)
(θ + 1)δ+1e(γ+log y)(θ+1),

for θ > −1 provided that δ > −1 and γ < 0 (and noting that log y < 0 since 0 < y < 1).

5. This problem can be solved using the R macro binodp provided with the text by Bolstad.
Entering the commands

> theta=c(0.10, 0.24, 0.33, 0.59, 0.68, 0.87)
> prior=c(0.27, 0.17, 0.12, 0.38, 0.05, 0.01)
> binodp(13,25,pi=theta,pi.prior=prior,ret=TRUE)

returns the following table

Prior Likelihood Posterior
0.1 0.27 3.965539e-08 7.641275e-07
0.24 0.17 2.877309e-04 5.544343e-03
0.33 0.12 2.810532e-03 5.415668e-02
0.59 0.38 4.680523e-02 9.018991e-01
0.68 0.05 1.992572e-03 3.839525e-02
0.87 0.01 1.981978e-07 3.819113e-06

where, as noted in lab, the column labelled Likelihood should read Joint.

Thus, we can summarize the required posterior probabilities as

f(θ = 0.10 | y = 13) = 0.0000007641275,

f(θ = 0.24 | y = 13) = 0.005544343,

f(θ = 0.33 | y = 13) = 0.05415668,

f(θ = 0.59 | y = 13) = 0.9018991,

f(θ = 0.68 | y = 13) = 0.03839525,

f(θ = 0.01 | y = 13) = 0.000003819113.

Notice that the vast majority of posterior weight is given to θ = 0.59. This is not a surprise since
there were y = 13 successes in n = 25 trials—we would expect the success probability to be about
1/2.
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