1. Using a Riemann midpoint sum with four partitions of equal width gives

$$
\int_{0}^{1} x^{2} \mathrm{~d} x \approx \frac{1}{4}\left[\left(\frac{1}{8}\right)^{2}+\left(\frac{3}{8}\right)^{2}+\left(\frac{5}{8}\right)^{2}+\left(\frac{7}{8}\right)^{2}\right]=\frac{21}{64}=0.328125 .
$$

2. Note that a special case of Bayes' Theorem follows from the definition of conditional probability, namely that if $P(A)>0$ and $P(B)>0$, then $P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)$ since both of these expression equal $P(A \cap B)$. Hence,
P (Elvis was an identical twin|Elvis had a twin brother)
$=\frac{P(\text { Elvis had a twin brother } \mid \text { Elvis was an identical twin }) \cdot P(\text { Elvis was an identical twin })}{P(\text { Elvis had a twin brother })}$.
We are told that

$$
P(\text { Elvis was an identical twin })=\frac{1}{300} .
$$

Furthermore, it follows immediately that

$$
P(\text { Elvis had a twin brother|Elvis was an identical twin })=1 .
$$

Therefore, we must calculate P (Elvis had a twin brother) using the law of total probability. Thus,
P (Elvis had a twin brother)
$=P($ Elvis had a twin brother \mid Elvis was an identical twin $) \cdot P($ Elvis was an identical twin $)$
$+P($ Elvis had a twin brother \mid Elvis was a fraternal twin $) \cdot P($ Elvis was a fraternal twin) $+P$ (Elvis had a twin brother|Elvis was NOT a twin) $\cdot P$ (Elvis was NOT a twin)
$=1 \cdot \frac{1}{300}+\frac{1}{2} \cdot \frac{1}{125}+0$
so that

$$
P(\text { Elvis was an identical twin } \mid \text { Elvis had a twin brother })=\frac{1 \cdot \frac{1}{300}}{1 \cdot \frac{1}{300}+\frac{1}{2} \cdot \frac{1}{125}}=\frac{5}{11} .
$$

3. Suppose that $Y \mid \theta \sim \operatorname{Bin}(n, \theta)$ with $\theta \sim \beta(a, b)$ so that

$$
g(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}, \quad 0 \leq \theta \leq 1 .
$$

As shown in class,

$$
f(\theta \mid y)=\frac{\theta^{y}(1-\theta)^{n-y} \cdot g(\theta)}{\int_{-\infty}^{\infty} \theta^{y}(1-\theta)^{n-y} \cdot g(\theta) \mathrm{d} \theta}
$$

Thus,

$$
f(\theta \mid y) \propto \theta^{y}(1-\theta)^{n-y} \theta^{a-1}(1-\theta)^{b-1}=\theta^{y+a-1}(1-\theta)^{n-y+b-1}
$$

from which we conclude that the posterior distribution of θ given y is $\beta(y+a, n-y+b)$.
4. (a) If $Y_{1}, \ldots Y_{n}$ are i.i.d. Poisson (θ) random variables, then

$$
f\left(y_{1}, \ldots, y_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\frac{1}{\prod y_{i}!} e^{-n \theta} \theta^{\sum y_{i}}
$$

where the sum and product both run from $i=1$ to n.
4. (b) If the prior distribution of θ is $\Gamma(\alpha, \beta)$, then

$$
f\left(\theta \mid y_{1}, \ldots, y_{n}\right) \propto e^{-n \theta} \theta \sum y_{i} \cdot \theta^{\alpha-1} e^{-\theta / \beta}=e^{-\theta(n+1 / \beta)} \theta^{\alpha-1+\sum y_{i}}
$$

which implies that the posterior distribution of θ given $\left(y_{1}, \ldots, y_{n}\right)$ is

$$
\Gamma\left(\alpha+\sum_{i=1}^{n} y_{i}, \frac{1}{n+1 / \beta}\right) .
$$

5. (a) As shown in class, if Y_{1}, \ldots, Y_{n} are a random sample of $\mathcal{N}\left(\theta, \sigma^{2}\right)$ randopm variables with prior density $g(\theta) \sim \mathcal{N}\left(\mu, \tau^{2}\right)$, then the posterior of θ given $\left(y_{1}, \ldots, y_{n}\right)$ is

$$
\mathcal{N}\left(\frac{\sigma^{2} \mu+n \tau^{2} \bar{y}}{\sigma^{2}+n \tau^{2}}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}}\right) .
$$

Thus, using the data in the problem, we have

$$
\sigma^{2}=20^{2}, \quad \mu=180, \quad \tau^{2}=40^{2}
$$

which implies that the posterior of θ given $\bar{y}=150$ is

$$
\begin{aligned}
\mathcal{N}\left(\frac{20^{2} \cdot 180+n 40^{2} \cdot 150}{20^{2}+n 40^{2}}, \frac{20^{2} \cdot 40^{2}}{20^{2}+n 40^{2}}\right) & =\mathcal{N}\left(\frac{72000+240000 n}{400+1600 n}, \frac{640000}{400+1600 n}\right) \\
& =\mathcal{N}\left(\frac{180+600 n}{1+4 n}, \frac{1600}{1+4 n}\right)
\end{aligned}
$$

5. (b) As shown in class, the posterior predictive distribution for \tilde{y} given y is

$$
\mathcal{N}\left(\nu, \sigma^{2}+\phi^{2}\right)
$$

where

$$
\nu=\frac{\sigma^{2} \mu+n \tau^{2} \bar{y}}{\sigma^{2}+n \tau^{2}} \quad \text { and } \quad \phi^{2}=\frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}} .
$$

Thus, since $\sigma^{2}=20^{2}$, we find

$$
f(\tilde{y} \mid y) \sim \mathcal{N}\left(\frac{180+600 n}{1+4 n}, 400+\frac{1600}{1+4 n}\right) .
$$

