This assignment is due at the beginning of class on Tuesday, January 22, 2008.

1. Compute the approximate value of

$$
\int_{0}^{1} x^{2} \mathrm{~d} x
$$

using a Riemann midpoint sum and four partitions of equal width.
2. Approximately $1 / 125$ of all births are fraternal twins and $1 / 300$ of births are identical twins. Elvis Presley had a twin brother (who died at birth). What is the probability that Elvis was an identical twin? (You may approximate the probability of a boy or a girl as $1 / 2$.)
3. Suppose that $Y \mid \theta \sim \operatorname{Bin}(n, \theta)$ where θ follows a $\beta(a, b)$ prior density. That is, assume

$$
g(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}, \quad 0 \leq \theta \leq 1 .
$$

Determine the posterior distribution of θ given $Y=y$.
4. Recall that a random variable Y is said to be Poisson with parameter θ if it has density function

$$
f(y \mid \theta)=\frac{\theta^{y} e^{-\theta}}{y!}, \quad y=0,1,2, \ldots
$$

Suppose that the random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ are i.i.d. $\operatorname{Poisson}(\theta)$ where the parameter θ is unknown.
(a) Compute $f\left(y_{1}, y_{2}, \ldots, y_{n} \mid \theta\right)$, the likelihood function. (In STAT 252, we wrote the likelihood function as $L(\theta)$.)
(b) If the prior distribution of θ is $\Gamma(\alpha, \beta)$, determine the posterior distribution of θ given $\left\{Y_{1}=\right.$ $\left.y_{1}, Y_{2}=y_{2}, \ldots, Y_{n}=y_{n}\right\}$.
5. A random sample of n University of Regina undergraduate students is drawn and each of their weights is measured. The average weight of the n sampled students is $\bar{y}=150$ pounds. Assume that the weights of U of R undergraduates are normally distributed with unknown mean θ and known standard deviation 20 pounds. Suppose that your prior distribution for θ is normal with mean 180 pounds and standard deviation 40 pounds.
(a) Determine the posterior distribution for θ. (Give your answer as a function of n.)
(b) A new student is sampled at random from the same population and has a weight of \tilde{y}. Determine $f(\tilde{y} \mid y)$, the posterior predictive distribution for \tilde{y}. (Your answer will still depend on n.)

