Statistics 351 Fall 2015 Midterm \#2 - Solutions

1. (a) The joint density for $X_{(1)}, X_{(2)}, X_{(3)}$ is

$$
f_{X_{(1)}, X_{(2)}, X_{(3)}}\left(y_{1}, y_{2}, y_{3}\right)=3!, \quad 0 \leq y_{1} \leq y_{2} \leq y_{3} \leq 1 .
$$

so that the joint density for $X_{(1)}, X_{(2)}$ is

$$
f_{X_{(1)}, X_{(2)}}\left(y_{1}, y_{2}\right)=\int_{-\infty}^{\infty} f_{X_{(1)}, X_{(2)}, X_{(3)}}\left(y_{1}, y_{2}, y_{3}\right) \mathrm{d} y_{3}=\int_{y_{2}}^{1} 6 \mathrm{~d} y_{3}=6\left(1-y_{2}\right)
$$

provided that $0 \leq y_{1} \leq y_{2} \leq 1$.

1. (b) We find

$$
\begin{aligned}
P\left(X_{(2)}<2 X_{(1)}\right) & =\iint_{\left\{y_{2}<2 y_{1}\right\}} f_{X_{(1)}, X_{(2)}}\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}=\int_{0}^{1} \int_{y_{2} / 2}^{y_{2}} 6\left(1-y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& =\int_{0}^{1} 6\left(1-y_{2}\right)\left[\int_{y_{2} / 2}^{y_{2}} 1 \mathrm{~d} y_{1}\right] \mathrm{d} y_{2}=\int_{0}^{1} 6\left(1-y_{2}\right)\left(y_{2}-y_{2} / 2\right) \mathrm{d} y_{2} \\
& =\int_{0}^{1} 3 y_{2}\left(1-y_{2}\right) \mathrm{d} y_{2}=\left[\frac{3}{2} y_{2}^{2}-y_{2}^{3}\right]_{y_{2}=0}^{y_{2}=1} \\
& =\frac{1}{2} .
\end{aligned}
$$

2. Since X_{1}, X_{2} are iid $\operatorname{Exp}(1)$, the joint density of $X_{(1)}, X_{(2)}$ is

$$
f_{X_{(1)}, X_{(2)}}\left(y_{1}, y_{2}\right)=2 f\left(y_{1}\right) f\left(y_{2}\right)=2 e^{-y_{1}-y_{2}}, \quad 0<y_{1} \leq y_{2}<\infty .
$$

If $U=X_{(2)}-X_{(1)}$ and $V=X_{(1)}$, then solving for $X_{(1)}$ and $X_{(2)}$ implies $X_{(1)}=V$ and $X_{(2)}=U+V$. The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial y_{1}}{\partial u} & \frac{\partial y_{1}}{\partial v} \\
\frac{\partial y_{2}}{\partial u} & \frac{\partial y_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-1
$$

implying that $f_{U, V}(u, v)=f_{X_{(1)}, X_{(2)}}(v, u+v) \cdot|J|=2 e^{-u-(u+v)}=2 e^{-2 u} e^{-v}$ provided $u>0, v>0$. (Note that $u>0$ and $v>0$ implies that necessarily $v<u+v$.) Hence, we see that if $f_{U}(u)=2 e^{-2 u}, u>0$, which is the density of an $\operatorname{Exp}(1 / 2)$ random variable, and if $f_{V}(v)=e^{-v}, v>0$, which is the density of an $\operatorname{Exp}(1)$ random variable, then $f_{U, V}(u, v)=f_{U}(u) f_{V}(v)$ implying that U and V are independent.
3. If $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$, then since the components of \mathbf{X} are independent and normally distributed, \mathbf{X} has a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix Λ where

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text {. }
$$

Let

$$
B=\left[\begin{array}{cc}
1 & -2 \\
2 & 3 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
$$

so that $\mathbf{Y}=B \mathbf{X}+\mathbf{b}$. By Theorem 5.3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}+\mathbf{b}=\left[\begin{array}{cc}
1 & -2 \\
2 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left[\begin{array}{cc}
1 & -2 \\
2 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 13 & 3 \\
-2 & 3 & 1
\end{array}\right] .
$$

4. (a) Since $\operatorname{det}[\boldsymbol{\Lambda}]=1-\rho^{2}$ and

$$
\Lambda^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right]
$$

we conclude that the density for \mathbf{X} is

$$
\begin{aligned}
f_{\mathbf{X}}(x, y) & =\frac{1}{2 \pi \sqrt{\operatorname{det}[\boldsymbol{\Lambda}]}} \exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x & y
\end{array}\right] \boldsymbol{\Lambda}^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\} \\
& =\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}-2 \rho x y+y^{2}\right)\right\}
\end{aligned}
$$

4. (b) If $\rho=0$, then

$$
f_{\mathbf{X}}(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}+y^{2}\right)\right\}=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{y^{2}}{2}\right\}=f_{X}(x) f_{Y}(y)
$$

showing that the joint density for $(X, Y)^{\prime}$ can be factored into the product of the densities for $X \in N(0,1)$ and $Y \in N(0,1)$. This proves that X and Y are independent.

