
Statistics 351 Fall 2015 Midterm #1 – Solutions
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so that c = 3/2.

1. (b) By definition,
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1. (c) By definition,

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=

cx

cx(2− x)
=

1

2− x
provided that x ≤ y ≤ 2. Note that Y |X = x is uniformly distribution on [x, 2].

1. (d) Since Y |X = x ∈ U [x, 2], we know E(Y |X = x) = (2 + x)/2. Equivalently, we find
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2. If U = X+2Y and V = X, then solving for X and Y gives X = V and Y = (U−V )/2.
The Jacobian of this transformation is
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We now need to be careful with the limits of integration. Since x > 0 we see that
necessarily v > 0. However, y > 0 implies that (u − v)/2 > 0 so u − v > 0 or,
equivalently, u > v. Therefore, we conclude that for 0 < v < u <∞, we have

fU,V (u, v) = fX,Y (v, (u− v)/2) · |J | = v3
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The marginal for U is given by
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provided u > 0. Note that U ∈ Γ(5, 1).
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3. Using the law of total probability,
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4. If Y = FX(X), then the distribution function of Y is
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The density function of Y is
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provided that 0 ≤ y ≤ 1. Thus, Y is uniformly distributed on [0, 1].
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