Statistics 351 Fall 2015 Midterm \#1 - Solutions

1. (a) We find

$$
\begin{aligned}
\frac{1}{c}=\int_{1}^{2} \int_{1}^{y} x \mathrm{~d} x \mathrm{~d} y=\int_{1}^{2}\left[\frac{x^{2}}{2}\right]_{x=1}^{x=y} \mathrm{~d} y=\int_{1}^{2}\left(\frac{y^{2}}{2}-\frac{1}{2}\right) \mathrm{d} y & =\left[\frac{y^{3}}{6}-\frac{y}{2}\right]_{y=1}^{y=2} \\
& =\left(\frac{8}{6}-\frac{2}{2}-\frac{1}{6}+\frac{1}{2}\right) \\
& =\frac{2}{3}
\end{aligned}
$$

so that $c=3 / 2$.

1. (b) By definition,

$$
f_{X}(x)=\int_{x}^{2} c x \mathrm{~d} y=c x(2-x)=\frac{3}{2} x(2-x)
$$

provided that $1 \leq x \leq 2$.

1. (c) By definition,

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{c x}{c x(2-x)}=\frac{1}{2-x}
$$

provided that $x \leq y \leq 2$. Note that $Y \mid X=x$ is uniformly distribution on $[x, 2]$.

1. (d) Since $Y \mid X=x \in U[x, 2]$, we know $\mathbb{E}(Y \mid X=x)=(2+x) / 2$. Equivalently, we find

$$
\mathbb{E}(Y \mid X=x)=\int_{x}^{2} y \cdot \frac{1}{2-x} \mathrm{~d} y=\frac{1}{2-x}\left[\frac{y^{2}}{2}\right]_{y=x}^{y=2}=\frac{1}{2-x}\left[2-\frac{x^{2}}{2}\right]=\frac{2+x}{2} .
$$

2. If $U=X+2 Y$ and $V=X$, then solving for X and Y gives $X=V$ and $Y=(U-V) / 2$. The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
1 / 2 & -1 / 2
\end{array}\right|=-\frac{1}{2} .
$$

We now need to be careful with the limits of integration. Since $x>0$ we see that necessarily $v>0$. However, $y>0$ implies that $(u-v) / 2>0$ so $u-v>0$ or, equivalently, $u>v$. Therefore, we conclude that for $0<v<u<\infty$, we have

$$
f_{U, V}(u, v)=f_{X, Y}(v,(u-v) / 2) \cdot|J|=\frac{v^{3}}{3} e^{-u} \cdot \frac{1}{2}=\frac{v^{3}}{6} e^{-u}
$$

The marginal for U is given by

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\int_{0}^{u} \frac{v^{3}}{6} e^{-u} \mathrm{~d} v=\frac{e^{-u}}{6} \int_{0}^{u} v^{3} \mathrm{~d} v=\frac{e^{-u}}{6}\left[\frac{v^{4}}{4}\right]_{v=0}^{v=u}=\frac{u^{4}}{24} e^{-u}
$$

provided $u>0$. Note that $U \in \Gamma(5,1)$.
3. Using the law of total probability,

$$
\begin{aligned}
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x=\int_{-\infty}^{\infty} f_{Y \mid X=x}(y) f_{X}(x) \mathrm{d} x & =\int_{y}^{1} 6 x(1-x) \cdot \frac{1}{x} \mathrm{~d} x \\
& =\int_{y}^{1} 6(1-x) \mathrm{d} x \\
& =-\left.3(1-x)^{2}\right|_{x=y} ^{x=1} \\
& =3(1-y)^{2}
\end{aligned}
$$

provided $0 \leq y \leq 1$.
4. If $Y=F_{X}(X)$, then the distribution function of Y is

$$
\begin{aligned}
P(Y \leq y)=P\left(F_{X}(X) \leq y\right)=P\left(\frac{1}{2}+\frac{1}{\pi} \arctan (X) \leq y\right) & =P(X \leq \tan (\pi(y-1 / 2))) \\
& =\int_{-\infty}^{\tan (\pi(y-1 / 2))} \frac{1}{\pi} \frac{1}{1+t^{2}} \mathrm{~d} t
\end{aligned}
$$

The density function of Y is

$$
\begin{aligned}
f_{Y}(y)=F_{Y}^{\prime}(y) & =\frac{1}{\pi} \frac{1}{1+\tan ^{2}(\pi(y-1 / 2))} \cdot \frac{\mathrm{d}}{\mathrm{~d} y} \tan (\pi(y-1 / 2)) \\
& =\frac{1}{\pi} \frac{1}{\sec ^{2}(\pi(y-1 / 2))} \cdot \sec ^{2}(\pi(y-1 / 2)) \cdot \pi \\
& =1
\end{aligned}
$$

provided that $0 \leq y \leq 1$. Thus, Y is uniformly distributed on $[0,1]$.

