
Statistics 351 Fall 2009 Midterm #2 – Solutions

1. Since X1, X2, and X3 are independent and normally distributed, we conclude that
if we set X = (X1, X2, X3)

′, then X is multivariate normal with mean vector µµµ and
covariance matrix ΛΛΛ where

µµµ =

0
0
0

 and ΛΛΛ =

1 0 0
0 1 0
0 0 1

 .

Let

B =

(
1 −1 0
2 1 −2

)
and b =

(
1
0

)
so that Y = BX + b. By Theorem 5.3.1, Y is MVN with mean

Bµµµ+ b =

(
1 −1 0
2 1 −2

)0
0
0

+

(
1
0

)
=

(
1
0

)
and covariance matrix

BΛΛΛB′ =

(
1 −1 0
2 1 −2

)1 0 0
0 1 0
0 0 1

 1 2
−1 1
0 −2

 =

(
2 1
1 9

)
.

2. By Theorem 4.2.1, the joint density of the maximum and minimum, we find

fX(1),X(4)
(y1, y4) = 12(y4 − y1)

2

provided that 0 < y1 < y4 < 1. Therefore,

P (X(1) +X(4) ≤ 1) =

∫∫
n

0<x+y<1,
0<x<y<1

o fX(1),X(4)
(x, y) dx dy.

Drawing the region of integration {0 < x + y < 1, 0 < x < y < 1}, we see that it can
be described by 0 < x < 1/2 and x < y < 1− x. This gives

P (X(1) +X(4) ≤ 1) =

∫ 1/2

0

∫ 1−x

x

fX(1),X(4)
(x, y) dy dx =

∫ 1/2

0

∫ 1−x

x

12(y − x)2 dy dx

=

∫ 1/2

0

4(y − x)3

∣∣∣∣y=1−x

y=x

dx =

∫ 1/2

0

4(1− 2x)3 dx = −1

2
(1− 2x)4

∣∣∣∣1/2

0

=
1

2
.

3. Recall that if X ∈ U(0, 1), then E(X) = 1/2 and var(X) = 1/12. Since the conditional
distribution of Y |X = x ∈ N(x, x2), we know that E(Y |X) = X and var(Y |X) = X2.
Therefore, it follows from Theorem 2.2.1 that

E(Y ) = E(E(Y |X)) = E(X) =
1

2
.
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From Corollary 2.2.3.1, we find

var(Y ) = E(var(Y |X)) + var(E(Y |X)) = E(X2) + var(X) =
1

12
+

(
1

2

)2

+
1

12
=

5

12
.

By definition, cov(X, Y ) = E(XY ) +E(Y )E(X). In order to calculate E(XY ), notice
that Theorem 2.2.1 implies E(XY ) = E(E(XY |X)). However, by Theorem 2.2.2
(“taking out what is known”), we see that

E(E(XY |X)) = E(XE(Y |X)) = E(X ·X) = E(X2) =
1

12
+

(
1

2

)2

.

Combining everything gives

cov(X, Y ) = E(XY )− E(Y )E(X) =
1

12
+

(
1

2

)2

− 1

2
· 1

2
=

1

12
.

4. Recall that a covariance matrix must be symmetric and non-negative definite. Since
the diagonal entries represent variances, they must be non-negative. Hence, we im-
mediately see that A and D cannot be covariance matrices since A has a negative
diagonal entry and D is not symmetric. If we check the upper left blocks of B, we
find det[B1] = 4, det[B2] = 8, and det[B3] = 4. Thus, B is positive definite (as well as
symmetric and having positive diagonal entries) and so it can be a covariance matrix.
If we check the upper left blocks of C, we find det[C1] = 1 and det[C2] = −3 so that
C cannot be a covariance matrix.

5. Since X has a multivariate normal distribution, we know from Definition I that X1+X2

is normal with
E(X1 +X2) = E(X1) + E(X2) = 0 + 0 = 0

and

var(X1 +X2) = var(X1) + var(X2) + 2 cov(X1, X2) = 1 + 2 + 2(−1) = 1.

Since Y has a multivariate normal distribution, we know from Definition I that Y1 +Y2

is normal with
E(Y1 + Y2) = E(Y1) + E(Y2) = 1 + 1 = 2

and
var(Y1 + Y2) = var(Y1) + var(Y2) + 2 cov(Y1, Y2) = 2 + 3 + 2(−2) = 1.

Furthermore, since X and Y are independent, we conclude that X1 +X2 and Y1 + Y2

are independent. That is, Z = (X1 +X2)− (Y1 +Y2) is the sum of independent normal
random variables and so it must also be normal. Finally, we calculate

E(Z) = E((X1 +X2)− (Y1 + Y2)) = E(X1 +X2)− E(Y1 + Y2) = 0− 2 = −2

and

var(Z) = var((X1 +X2)− (Y1 + Y2)) = var(X1 +X2) + var(Y1 + Y2) = 1 + 1 = 2.

That is, Z ∈ N(−2, 2).
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