Statistics 351 Fall 2008 Midterm #1 — Solutions

1. (a) By definition,
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Note that X € Exp(1) so that E(X) = 1.
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1. (b) By definition,
v
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Note that Y € I'(2,1).
1. (c) By definition,
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1. (d) By definition,
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Let u =y — x so that du = dy and the integral above becomes
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and so E(Y|X) =1+ X.

1. (e) Using (d) we find E(Y) = E(E(Y|X)) = E(1+ X) = 1+ E(X). However, from (a) we
know that E(X) =1 and so

EY)=1+EX)=1+1=2,

1. (f) If a > 1, then we find
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1. (g) fU=X+Y and V =Y, then solving for X and Y gives
X=U-V and Y =V.

The Jacobian of this transformation is
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Therefore, we conclude
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fov(u,v) = fxy(u—ov,v)-|J|=e" 1=e€

provided that 0 < v < u < 2v < oo (or, equivalently, § < v < u). The marginal for U

is given by
fu(u) = / fov(u,v)dv = / e ’dv=(—e") —e W2 e u>0.
—00 u/2 u/2
2. By the law of total probability,
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We now recognize
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as a gamma function. That is, make the change of variables u = y(z + a) so that
du = (z + a) dy and
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Hence, we conclude that
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This is sometimes called a type Il generalized Pareto density with parameters q, p, a.



3. (a) Notice that

3. (b)
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Therefore,
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where the second equality follows from “taking out what is known” and the third
equality follows from the fact that Y7, Ys, ... are independent. We now compute

(COEIC R e

and so we conclude
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E(Xp1|Xo,- .., Xp) = (Tp) ~ X,,.

Hence, {X,,n =0,1,2,...} is, in fact, a martingale

Since X, is a martingale, we know that E(X,,41|X,) = X,,. Therefore, using properties
of conditional expectation we find
B(Xi1) = B(E(Xy01] X)) = B(X,) = - = E(Xo)
Since Sy = 0 we see that Xy = 1 so that E(Xy) = 1 and therefore F(X,) = 1 for all
n=012...
IfU=Y — X and V = X, then solving for X and Y gives
X=V and Y=U+V.

The Jacobian of this transformation is
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Therefore, we conclude
fov(u,v) = fxy@u+v)-|J|=clc+1)(b—a)u 2 -1=clc+1)(b—a)u >
provided that —oo < v < a and —oc0o < b —v < u < .

You should check that / / c(c+1)(b—a)u ?dudv = 1.
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