Lecture \#24: Conditional Distributions for the Bivariate Normal

Reference. $\S 5.6$ pages $127-130$
Recall. Suppose that $\mathbf{X}=(X, Y)^{\prime} \in \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda})$ with

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{x} \\
\mu_{y}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Lambda}=\left[\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right] .
$$

In particular, $X \in \mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right), Y \in \mathcal{N}\left(\mu_{y}, \sigma_{y}^{2}\right)$, and $\operatorname{Corr}(X, Y)=\rho$. Assuming that $\operatorname{det}[\boldsymbol{\Lambda}]>$ 0 , or equivalently, that $\sigma_{x} \neq 0, \sigma_{y} \neq 0$, and $-1<\rho<1$, then the conditional distribution of Y given $X=x$ is

$$
Y \left\lvert\, X=x \in \mathcal{N}\left(\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right), \sigma_{y}^{2}\left(1-\rho^{2}\right)\right)\right.
$$

In particular,

$$
\mathbb{E}(Y \mid X)=\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(X-\mu_{x}\right)
$$

and

$$
\operatorname{Var}(Y \mid X)=\sigma_{y}^{2}\left(1-\rho^{2}\right)
$$

Example. Suppose that the random vector $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ has density

$$
f_{\mathbf{X}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}\right)\right\}
$$

(a) Determine the distribution of \mathbf{X}.
(b) Determine the distribution of X_{2} given $X_{1}=x$.
(c) Determine the distribution of $X_{1}-X_{2}$ given $X_{1}+X_{2}=0$.

Solution. (a) It appears that \mathbf{X} has the density function of a multivariate normal random vector. Thus, we must determine the mean vector $\boldsymbol{\mu}$, the covariance matrix $\boldsymbol{\Lambda}$, and verify that the distribution is, in fact, MVN. Clearly $\boldsymbol{\mu}=\overline{0}$. Furthermore,

$$
x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

which implies that

$$
\Lambda^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]
$$

It is easy to invert a 2×2 matrix, and so we see immediately that

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

since $\operatorname{det}[\boldsymbol{\Lambda}]=1$.

Thus, matching the general form of a MVN density function with the function given in this problem, we conclude that

$$
\mathbf{X} \in \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right)
$$

(b) The conditional density of X_{2} given $X_{1}=x$ is

$$
f_{X_{2} \mid X_{1}=x}\left(x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x, x_{2}\right)}{f_{X_{1}}(x)}=\frac{\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}-2 x x_{2}+2 x_{2}^{2}\right)\right\}}{\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{2}} \exp \left\{-\frac{1}{2} \cdot \frac{x^{2}}{2}\right\}}
$$

since $X_{1} \in N(0,2)$. Therefore,

$$
f_{X_{2} \mid X=x}\left(x_{2}\right)=\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{1 / 2}} \exp \left\{-\frac{1}{2} \frac{\left(x_{2}-x / 2\right)^{2}}{1 / 2}\right\}
$$

so that $X_{2} \left\lvert\, X=x \in N\left(\frac{x}{2}, \frac{1}{2}\right)\right.$.
(c) Consider $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ where $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+X_{2}$. If we let

$$
B=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

so that

$$
B \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
X_{1}-X_{2} \\
X_{1}+X_{2}
\end{array}\right]=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\mathbf{Y}
$$

then by Theorem 5.3.1, we conclude that $\mathbf{Y} \in \mathcal{N}\left(B \boldsymbol{\mu}, B \boldsymbol{\Lambda} B^{\prime}\right)$ where

$$
\mathbb{E}(\mathbf{Y})=B \boldsymbol{\mu}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\operatorname{Cov}(\mathbf{Y})=B \boldsymbol{\Lambda} B^{\prime}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right]
$$

Since $\operatorname{det}[\operatorname{Cov}(\mathbf{Y})]=4$, we deduce that the density of \mathbf{Y} is given by

$$
f_{\mathbf{Y}}\left(y_{1}, y_{2}\right)=\frac{1}{4 \pi} \exp \left\{-\frac{5}{8}\left(y_{1}^{2}-\frac{2}{5} y_{1} y_{2}+\frac{1}{5} y_{2}^{2}\right)\right\} .
$$

We now find

$$
\begin{aligned}
f_{Y_{1} \mid Y_{2}=0}\left(y_{1}\right)=\frac{f_{\mathbf{Y}}\left(y_{1}, 0\right)}{f_{Y_{2}}(0)} & =\frac{\frac{1}{4 \pi} \exp \left\{-\frac{5}{8}\left(y_{1}^{2}-\frac{2}{5} y_{1}(0)+\frac{1}{5}(0)^{2}\right)\right\}}{\frac{1}{\sqrt{10 \pi}} \exp \left\{-\frac{1}{10}(0)\right\}} \\
& =\frac{\sqrt{5}}{2 \sqrt{2 \pi}} \exp \left\{-\frac{5}{8} y_{1}^{2}\right\} .
\end{aligned}
$$

In other words, the distribution of $Y_{1} \mid Y_{2}=0$, or equivalently, $X_{1}-X_{2} \mid X_{1}+X_{2}=0$, is $\mathcal{N}\left(0, \frac{4}{5}\right)$.

