Statistics 351 (Fall 2015)
October 28, 2015
Prof. Michael Kozdron

Lecture \#18: Distribution of $X_{(k)}, k=1,2, \ldots, n$

Let $X_{(k)}$ denote the k th order variable so that $X_{(k)}$ is the k th smallest among $\left\{X_{1}, \ldots, X_{n}\right\}$. Thus, if $X_{(k)}$ is to be less than or equal to y_{k}, it must be the case that at least k of $\left\{X_{1}, \ldots, X_{n}\right\}$ are less than or equal to y_{k}. That is,

$$
P\left\{X_{(k)} \leq y_{k}\right\}=P\left\{\text { at least } k \text { of }\left\{X_{1}, \ldots, X_{n}\right\} \leq y_{k}\right\}
$$

and so

$$
P\left\{X_{(k)} \leq y_{k}\right\}=\sum_{j=k}^{n} P\left\{\text { exactly } j \text { of }\left\{X_{1}, \ldots, X_{n}\right\} \leq y_{k}\right\}
$$

Since X_{1}, \ldots, X_{n} are independent and identically distributed, it follows that the event that \{exactly j of $\left.\left\{X_{1}, \ldots, X_{n}\right\} \leq y_{k}\right\}$ has the same probability as the event that there are exactly j successes in n trials of an experiment with success probability $p=P\left\{X \leq y_{k}\right\}=F\left(y_{k}\right)$ on each trial. Thus,

$$
P\left\{\text { exactly } j \text { of }\left\{X_{1}, \ldots, X_{n}\right\} \leq y_{k}\right\}=\binom{n}{j}\left[F\left(y_{k}\right)\right]^{j}\left[1-F\left(y_{k}\right)\right]^{n-j} .
$$

In other words,

$$
P\left\{X_{(k)} \leq y_{k}\right\}=\sum_{j=k}^{n}\binom{n}{j}\left[F\left(y_{k}\right)\right]^{j}\left[1-F\left(y_{k}\right)\right]^{n-j}
$$

is an expression for the distribution function of $X_{(k)}$.
There is, however, a useful identity for binomial distributions in terms of beta distributions, namely

$$
\begin{equation*}
\sum_{j=k}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}=k\binom{n}{k} \int_{0}^{p} x^{k-1}(1-x)^{n-k} \mathrm{~d} x \tag{*}
\end{equation*}
$$

where $k \in\{0,1, \ldots, n\}$ and $0<p<1$.
Remark. Problem \#1 on Assignment \#6 outlines the proof of this identity.
Since

$$
k\binom{n}{k}=\frac{n!}{(k-1)!(n-k)!}=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)}
$$

we see that $(*)$ is equivalent to

$$
\sum_{j=k}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)} \int_{0}^{p} x^{k-1}(1-x)^{n-k} \mathrm{~d} x .
$$

Thus, if $X \in \operatorname{Bin}(n, p)$ and $Y \in \beta(k, n-k+1)$, then this says that

$$
P(X \geq k)=P(Y \leq p), \quad \text { or, equivalently, } \quad 1-F_{X}(k-1)=F_{Y}(p)
$$

In our case of the distribution of $X_{(k)}$, we see that

$$
P\left\{X_{(k)} \leq y_{k}\right\}=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)} \int_{0}^{F\left(y_{k}\right)} x^{k-1}(1-x)^{n-k} \mathrm{~d} x
$$

and so

$$
f_{X_{(k)}}\left(y_{k}\right)=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)}\left[F\left(y_{k}\right)\right]^{k-1}\left[1-F\left(y_{k}\right)\right]^{n-k} f\left(y_{k}\right)
$$

In summary, we have proved the following theorem.
Theorem. If X_{1}, \ldots, X_{n} are i.i.d. with common distribution function $F(x)$ and common density function $f(x)$, then the density of $X_{(k)}, k=1, \ldots, n$, is

$$
f_{X_{(k)}}\left(y_{k}\right)=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)}\left[F\left(y_{k}\right)\right]^{k-1}\left[1-F\left(y_{k}\right)\right]^{n-k} f\left(y_{k}\right)
$$

and the distribution function of $X_{(k)}, k=1, \ldots, n$, is

$$
F_{X_{(k)}}\left(y_{k}\right)=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)} \int_{0}^{F\left(y_{k}\right)} x^{k-1}(1-x)^{n-k} \mathrm{~d} x
$$

Exercise. Check that for $k=1$ and $k=n$, we recover the formulæ for $X_{(1)}$ and $X_{(n)}$ that we had earlier.

Remark. An alternate derivation of this result is given on pages 103-105 of [1].
Example. Suppose that $X_{1}, X_{2}, X_{3}, X_{4}$ are i.i.d. $U(0,1)$ random variables so that

$$
F(x)=\left\{\begin{array}{ll}
0, & \text { if } x \leq 0 \\
x, & \text { if } 0<x<1, \\
1, & \text { if } x \geq 1,
\end{array} \quad \text { and } \quad f(x)= \begin{cases}1, & \text { if } 0<x<1 \\
0, & \text { otherwise }\end{cases}\right.
$$

We find

$$
F_{X_{(4)}}\left(y_{4}\right)=\left[F\left(y_{4}\right)\right]^{4}= \begin{cases}0, & \text { if } y_{4} \leq 0 \\ y_{4}^{4}, & \text { if } 0<y_{4}<1 \\ 1, & \text { if } y_{4} \geq 1\end{cases}
$$

and so

$$
f_{X_{(4)}}\left(y_{4}\right)=\frac{d}{d y_{4}} F_{X_{(4)}}\left(y_{4}\right)= \begin{cases}4 y_{4}^{3}, & \text { if } 0<y_{4}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore, we find

$$
F_{X_{(1)}}\left(y_{1}\right)=1-\left[1-F\left(y_{1}\right)\right]^{4}= \begin{cases}1-(1-0)^{4}=0, & \text { if } y_{1} \leq 0 \\ 1-\left(1-y_{1}\right)^{4}, & \text { if } 0<y_{1}<1 \\ 1-(1-1)^{4}=1, & \text { if } y_{1} \geq 1\end{cases}
$$

and so

$$
f_{X_{(1)}}\left(y_{1}\right)=\frac{d}{d y_{1}} F_{X_{(1)}}\left(y_{1}\right)= \begin{cases}4\left(1-y_{1}\right)^{3}, & \text { if } 0<y_{1}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Using our earlier theorem, we find in general that the density of $X_{(k)}, k=1,2,3,4$, is given by

$$
f_{X_{(k)}}\left(y_{k}\right)=\frac{\Gamma(5)}{\Gamma(k) \Gamma(5-k)} y_{k}^{k-1}\left(1-y_{k}\right)^{4-k}, \quad 0<y_{k}<1 .
$$

That is, $X_{(k)} \in \beta(k, 5-k)$. In particular, we note that $\mathbb{E}\left(X_{(k)}\right)=k / 5$.
Example. If $X_{1}, X_{2}, X_{3}, X_{4}$ are i.i.d. $U(0,1)$ random variables, determine $\mathbb{E}(R)$, the expected value of the range $R=X_{(4)}-X_{(1)}$.

Solution. Using the results of Lecture \#17, we know that

$$
f_{R}(r)=4(4-1) \int_{-\infty}^{\infty} f(v) f(r+v)[F(r+v)-F(v)]^{4-2} \mathrm{~d} v, \quad r>0
$$

However, we need to be careful with our limits in this example. Since $X_{1}, X_{2}, X_{3}, X_{4}$ are i.i.d. $U(0,1)$, it is clear that $f_{R}(r)=0$ for $r \leq 0$ or $r \geq 1$. However, in our notation, given $R=r$, it must be the case that the allowable values of $X_{(1)}=v$ range from $0 \leq v \leq 1-r$. This gives

$$
f_{R}(r)=12 \int_{0}^{1-r}[(r+v)-v]^{2} \mathrm{~d} u=12 r^{2}(1-r)
$$

for $0<r<1$. We recognize this as the density of a $\beta(3,2)$ random variable, and so

$$
\mathbb{E}(R)=\frac{3}{5}
$$

Note that this answer is "obvious" since we expect 4 points uniformly distributed to be evenly spread out: $\mathbb{E}\left(X_{(1)}\right)=1 / 5, \mathbb{E}\left(X_{(2)}\right)=2 / 5, \mathbb{E}\left(X_{(3)}\right)=3 / 5, \mathbb{E}\left(X_{(4)}\right)=4 / 5$. Thus,

$$
\mathbb{E}(R)=\mathbb{E}\left(X_{(4)}\right)-\mathbb{E}\left(X_{(1)}\right)=\frac{3}{5} .
$$

