Lecture \#13: Conditional Expectation

Reference. $\S 2.2$ pages 33-37
Example. Suppose that X is the time before the first occurrence of a radioactive decay which is measured by an instrument. However, there is a delay built into the mechanism, and the decay is recorded as having taken place at some time $Y>X$. (That is, although we observe $Y=y$ as our time of decay, the first occurrence of the decay actually takes place at $X=x$. Because of the delay in the mechanism we know that $y>x$.) Assume that the prior distribution for X is $\operatorname{Exp}(1)$ and that the conditional distribution of Y given $X=x$ is

$$
f_{Y \mid X=x}(y)=\lambda e^{-\lambda(y-x)}, \quad 0<x<y<\infty
$$

where $\lambda>0$ is a known constant. Determine the posterior density function $f_{X \mid Y=y}(x)$.
Solution. By definition,

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{Y \mid X=x}(y) f_{X}(x)}{f_{Y}(y)}
$$

We are told that

$$
f_{Y \mid X=x}(y)=\lambda e^{-\lambda(y-x)}, \quad 0<x<y<\infty
$$

and

$$
f_{X}(x)=e^{-x}, \quad 0<x<\infty
$$

We now compute

$$
\begin{aligned}
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x=\int_{-\infty}^{\infty} f_{Y \mid X=x}(y) f_{X}(x) \mathrm{d} x & =\lambda \int_{0}^{y} e^{-\lambda(y-x)} e^{-x} \mathrm{~d} x \\
& =\lambda e^{-\lambda y} \int_{0}^{y} e^{-(1-\lambda) x} \mathrm{~d} x \\
& =\lambda e^{-\lambda y}\left[-\frac{1}{1-\lambda} e^{-(1-\lambda) x}\right]_{x=0}^{x=y} \\
& =\frac{\lambda}{1-\lambda} e^{-\lambda y}\left[1-e^{-(1-\lambda) y}\right]
\end{aligned}
$$

for $0<y<\infty$, and so we conclude

$$
f_{X \mid Y=y}(x)=\frac{\lambda e^{-\lambda(y-x)} e^{-x}}{\frac{\lambda}{1-\lambda} e^{-\lambda y}\left[1-e^{-(1-\lambda) y}\right]}=\frac{(1-\lambda) e^{(\lambda-1) x}}{1-e^{(\lambda-1) y}}
$$

for $0<x<y$.
Example. A stick of length 1 is broken at a random point (uniformly over the stick). The remaining piece is broken once more. Find the expected value and variance of the length of the remaining piece.

Solution. Let $X \in U(0,1)$ denote the position of the first random break, and let $Y \in$ $U(0, X)$ denote the position of the second random break.

The interpretation of the distribution of Y is that given $X=x$, the random variable $Y \in$ $U(0, x)$, i.e., $Y \mid X=x \in U(0, x)$ with $X \in U(0,1)$, so that

$$
f_{Y \mid X=x}(y)= \begin{cases}1 / x, & \text { for } 0<y<x \\ 0, & \text { otherwise }\end{cases}
$$

Intuitively,

$$
\mathbb{E}(Y \mid X=x)=\frac{x}{2} \quad \text { and } \quad \operatorname{Var}(Y \mid X=x)=\frac{x^{2}}{12}
$$

Formally, we have the following definition.
Definition. If $(X, Y)^{\prime}$ is jointly distributed, then the conditional expectation of Y given $X=x$ is

$$
E(Y \mid X=x)= \begin{cases}\sum_{y} y p_{Y \mid X=x}(y), & \text { in the discrete case, and } \\ \int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) \mathrm{d} y, & \text { in the continuous case }\end{cases}
$$

provided that the sum or integral converges absolutely.
Example (continued). We can now verify that $\mathbb{E}(Y \mid X=x)=x / 2$. This follows since

$$
\mathbb{E}(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) \mathrm{d} y=\int_{0}^{x} y \cdot \frac{1}{x} d y=\frac{x}{2}
$$

as expected.
Note. The conditional expectation of Y given $X=x$ depends on the value of x. That is, $\mathbb{E}(Y \mid X=x)$ is a function of x, say

$$
\mathbb{E}(Y \mid X=x)=h(x)
$$

