Lecture \#12: The Bayesian Approach

The basic goal of statistics is to estimate population parameters. Data is collected and used to form the required estimator. The point-of-view of frequentist statistics is that parameter estimation is based on "long-run averages" which is justified by results such as the central limit theorem and the strong law of large numbers.
However, another point-of-view is that the experimenter never has complete lack of knowledge of the population parameter, but rather has some prior (a priori) knowledge or a "reasonable guess" of what the parameter is. The data are then collected and used to update (a posteriori) information about the parameter. This second approach is known as Bayesian statistics.

Example. Consider tossing a coin but assume that nothing is known about $q=P\{$ head $\}$. Let X_{n} denote the number of heads after n tosses. One possible model for this situation is

$$
X_{n} \mid Q=q \in \operatorname{Bin}(n, q) \text { with } Q \in U(0,1) .
$$

(a) Determine the unconditional distribution of X_{n}.
(b) Determine the posterior distribution of Q given $X_{n}=k$.

Solution. (a) For $k=0,1,2, \ldots, n$, we obtain from the law of total probability that

$$
\begin{aligned}
P\left\{X_{n}=k\right\} & =\int_{0}^{1} P\left\{X_{n}=k \mid Q=q\right\} f_{Q}(q) \mathrm{d} q \\
& =\int_{0}^{1}\binom{n}{k} q^{k}(1-q)^{n-k} \cdot 1 \mathrm{~d} q \\
& =\binom{n}{k} \int_{0}^{1} q^{(k+1)-1}(1-q)^{(n+1-k)-1} \mathrm{~d} q \\
& =\binom{n}{k} \frac{\Gamma(k+1) \Gamma(n+1-k)}{\Gamma(k+1+n+1-k)} \text { using facts about the beta distribution } \\
& =\frac{n!k!(n-k)!}{(n-k)!k!(n+1)!} \\
& =\frac{1}{n+1} .
\end{aligned}
$$

That is, X_{n} is uniform on $\{0,1, \ldots, n\}$.
(b) As for the posterior distribution of Q given $X_{n}=k$, we find using Bayes' Rule (i.e., the definition of conditional probability) that

$$
\begin{aligned}
f_{Q \mid X_{n}=k}(q)=\frac{P\left\{X_{n}=k \mid Q=y\right\} f_{Q}(y)}{P\left\{X_{n}=k\right\}} & =\frac{\binom{n}{k} q^{k}(1-q)^{n-k} \cdot 1}{\frac{1}{n+1}} \\
& =(n+1)\binom{n}{k} q^{k}(1-q)^{n-k} \\
& =(n+1) \frac{n!}{k!(n-k)!} q^{k}(1-q)^{n-k} \\
& =\frac{(n+1!}{k!(n-k)!} q^{k}(1-q)^{n-k} \\
& =\frac{\Gamma(n+2)}{\Gamma(k+1) \Gamma(n+1-k)} q^{k}(1-q)^{n-k}
\end{aligned}
$$

provided that $0<q<1$. Note that we used the fact that $\Gamma(p+1)=p$! whenever p is a positive integer. In summary, the posterior distribution of Q given $X_{n}=k$ is $\beta(k+1, n+1-k)$.
Example. If $X \mid N=n \in \operatorname{Bin}(n, p)$ with $N \in \operatorname{Po}(\lambda)$, determine the distribution of X.
Solution. If $X \mid N=n \in \operatorname{Bin}(n, p)$, then for $k=0,1,2, \ldots$,

$$
P\{X=k \mid N=n\}=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Therefore, if $k=0,1,2, \ldots$, it follows that

$$
P\{X=k\}=\sum_{n=0}^{\infty} P\{X=k \mid N=n\} P\{N=n\}=\sum_{n=k}^{\infty}\binom{n}{k} p^{k}(1-p)^{n-k} \cdot \frac{e^{-\lambda} \lambda^{n}}{n!}
$$

Note that we used the fact that n must necessarily be at least equal to k. Indeed, if we have observed k successes, then there necessarily must have been at least k trials. Continuing, we find

$$
P\{X=k\}=\frac{p^{k}}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \frac{n!(1-p)^{n-k} \lambda^{n}}{(n-k)!n!}=\frac{p^{k}}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \frac{(1-p)^{n-k}}{(n-k)!} \lambda^{n} .
$$

We now observe that two of the terms in the summand depend on n only through $n-k$. Moreover, we see that if $n=k$, then $n-k=0$. Thus means that we want to write $\lambda^{n}=\lambda^{n-k+k}=\lambda^{k} \lambda^{n-k}$ which implies that

$$
\begin{aligned}
P\{X=k\}=\frac{p^{k} \lambda^{k}}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \frac{(1-p)^{n-k}}{(n-k)!} \lambda^{n-k} & =\frac{(\lambda p)^{k}}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \frac{(\lambda(1-p))^{n-k}}{(n-k)!} \\
& =\frac{(\lambda p)^{k} e^{-\lambda}}{k!} \sum_{j=0}^{\infty} \frac{(\lambda(1-p))^{j}}{j!} \\
& =\frac{(\lambda p)^{k} e^{-\lambda}}{k!} \cdot e^{\lambda(1-p)} \\
& =\frac{(\lambda p)^{k} e^{-\lambda p}}{k!} .
\end{aligned}
$$

Thus, we conclude that $X \in \operatorname{Po}(\lambda p)$.

