Lecture \#11: Distributions with Random Parameters

Example. Suppose that the random vector $(X, Y)^{\prime}$ has joint density function

$$
f_{X, Y}(x, y)= \begin{cases}e^{-y}, & \text { if } 0<x<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Determine $f_{X}(x)$, the marginal density function of X.
(b) Determine $f_{Y}(y)$, the marginal density function of Y.
(c) Calculate $f_{X \mid Y=y}(x)$, the conditional density function of X given $Y=y$.
(d) Calculate $f_{Y \mid X=x}(y)$, the conditional density function of Y given $X=x$.

Solution. For (a) we have, by definition, that

$$
f_{X}(x)=\int_{x}^{\infty} e^{-y} \mathrm{~d} y=\left.\left(-e^{-y}\right)\right|_{x} ^{\infty}=e^{-x}, \quad x>0
$$

implying that $X \in \operatorname{Exp}(1)$. For (b) we have, by definition, that

$$
f_{Y}(y)=\int_{0}^{y} e^{-y} \mathrm{~d} x=y e^{-y}, \quad y>0
$$

implying that $Y \in \Gamma(2,1)$. Thus, for (c) we conclude that

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{e^{-y}}{y e^{-y}}=\frac{1}{y}, \quad 0<x<y
$$

implying that $X \mid Y=y \in U(0, y)$. Finally, for (d) we find

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{e^{-y}}{e^{-x}}=e^{x-y}, \quad 0<x<y<\infty .
$$

Example. Suppose that $(X, Y)^{\prime}$ is a jointly distributed random variable with density function

$$
f_{X, Y}(x, y)= \begin{cases}c x y, & \text { if } 0<y<1 \text { and } 0<x<y^{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

where the value of the normalizing constant c is chosen so that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$.
(a) Determine the value of c.
(b) Compute $f_{X}(x)$.
(c) Compute $f_{Y}(y)$.
(d) Compute $f_{Y \mid X=x}(y)$.

Solution. (a) We find

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} x y \mathrm{~d} y \mathrm{~d} x=\left.\int_{0}^{1} x \cdot \frac{1}{2} y^{2}\right|_{y=\sqrt{x}} ^{y=1} \mathrm{~d} x=\frac{1}{2} \int_{0}^{1} x(1-x) \mathrm{d} x=\left.\frac{1}{2}\left(\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{1}{12}
$$

so that $c=12$.
(b) By definition,

$$
f_{X}(x)=\int_{\sqrt{x}}^{1} 12 x y \mathrm{~d} y=\left.12 x \cdot \frac{1}{2} y^{2}\right|_{y=\sqrt{x}} ^{y=1}=6 x(1-x)
$$

provided that $0<x<1$.
(c) By definition,

$$
f_{Y}(y)=\int_{0}^{y^{2}} 12 x y \mathrm{~d} y=\left.12 y \cdot \frac{1}{2} x^{2}\right|_{x=0} ^{x=y^{2}}=6 y^{5}
$$

provided that $0<y<1$.
(d) By definition, if $0<x<1$ is fixed, then

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{12 x y}{6 x(1-x)}=\frac{2 y}{1-x}
$$

provided that $\sqrt{x}<y<1$.

Last class we introduced the law of total probability. It turns out that if X and Y are jointly distributed random variables, then we can generalize this result.

Suppose that X is continuous.

- If Y is also continuous, then

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{-\infty}^{\infty} f_{X \mid Y=y}(x) f_{Y}(y) \mathrm{d} y
$$

- However, if Y is discrete, then

$$
f_{X}(x)=\sum_{y} f_{X, Y}(x, y)=\sum_{y} f_{X \mid Y=y}(x) P\{Y=y\}
$$

On the other hand, suppose that X is discrete.

- If Y is continuous, then

$$
P\{X=x\}=\int_{-\infty}^{\infty} P\{X=x \mid Y=y\} f_{Y}(y) \mathrm{d} y
$$

- However, if Y is also discrete, then

$$
P\{X=x\}=\sum_{y} P\{X=x \mid Y=y\} P\{Y=y\}
$$

Example. Suppose that $X \mid M=m \in \operatorname{Po}(m)$ with $M \in \operatorname{Exp}(1)$. Determine the (unconditional) distribution of X.

Solution. By the law of total probability, we find that for $k=0,1,2, \ldots$,

$$
P\{X=k\}=\int_{0}^{\infty} P\{X=k \mid M=x\} f_{M}(x) \mathrm{d} x=\int_{0}^{\infty} \frac{e^{-x} x^{k}}{k!} \cdot e^{-x} \mathrm{~d} x=\frac{1}{k!} \int_{0}^{\infty} x^{k} e^{-2 x} \mathrm{~d} x .
$$

Making the substitution $u=2 x, \mathrm{~d} u=2 \mathrm{~d} x$ gives

$$
\frac{1}{k!} \int_{0}^{\infty} x^{k} e^{-2 x} \mathrm{~d} x=\frac{1}{k!} \int_{0}^{\infty} u^{k} 2^{-k} e^{-u} 2^{-1} \mathrm{~d} u=\frac{1}{2^{k+1} k!} \int_{0}^{\infty} u^{k} e^{-u} \mathrm{~d} u=\frac{\Gamma(k+1)}{2^{k+1} k!}=\frac{1}{2^{k+1}}
$$

since $\Gamma(k+1)=k$!. Hence, we see that $P\{X=k\}=2^{-k-1}, k=0,1,2, \ldots$, and so we conclude that $X \in \operatorname{Ge}(1 / 2)$.

