Lecture \#10: Conditioning (Chapter 2)

Reference. §2.1 pages 31-33
Suppose that A and B are events with $P\{A\}>0$ and $P\{B\}>0$. Since we can write A as the disjoint union $A=(A \cap B) \cup\left(A \cap B^{c}\right)$, we conclude that

$$
\begin{equation*}
P\{A\}=P\{A \cap B\}+P\left\{A \cap B^{c}\right\} . \tag{*}
\end{equation*}
$$

In general, if $B_{1}, B_{2}, \ldots, B_{m}$ partition the sample space Ω, that is if $B_{1}, B_{2}, \ldots, B_{m}$ are disjoint with $B_{1} \cup \cdots \cup B_{m}=\Omega$ and $P\left\{B_{k}\right\}>0$ for all $k=1, \ldots, m$, then

$$
P\{A\}=\sum_{i=1}^{m} P\left\{A \cap B_{i}\right\}
$$

This formula is sometimes called the law of total probability. The conditional probability of A given B is defined to be

$$
\begin{equation*}
P\{A \mid B\}=\frac{P\{A \cap B\}}{P\{B\}} \tag{**}
\end{equation*}
$$

so that, similarly, the conditional probability of B given A is

$$
P\{B \mid A\}=\frac{P\{B \cap A\}}{P\{A\}}
$$

Since $P\{A \cap B\}=P\{B \cap A\}$ we conclude

$$
P\{B \mid A\}=\frac{P\{A \mid B\} P\{B\}}{P\{A\}} .
$$

$$
(* * *)
$$

Now, substituting ($* *$) into ($*$) we find

$$
\begin{aligned}
P\{A\} & =P\{A \cap B\}+P\left\{A \cap B^{c}\right\} \\
& =P\{A \mid B\} P\{B\}+P\left\{A \mid B^{c}\right\} P\left\{B^{c}\right\}
\end{aligned}
$$

so that $(* * *)$ implies

$$
P\{B \mid A\}=\frac{P\{A \mid B\} P\{B\}}{P\{A \mid B\} P\{B\}+P\left\{A \mid B^{c}\right\} P\left\{B^{c}\right\}}
$$

This result is sometimes known as Bayes' rule. In fact, it is a special case of the following general version of Bayes' rule

Fact (Bayes' Rule). If $B_{1}, B_{2}, \ldots, B_{m}$ partition the sample space Ω, then

$$
P\left\{B_{k} \mid A\right\}=\frac{P\left\{A \mid B_{k}\right\} P\left\{B_{k}\right\}}{\sum_{i=1}^{m} P\left\{A \mid B_{i}\right\} P\left\{B_{i}\right\}}
$$

for any $k=1,2, \ldots, m$.

If we now let X and Y be discrete random variables and assume that $y_{1}, y_{2}, \ldots, y_{m}$ are the possible values of Y, then with $A=\{X=x\}$ and $B_{i}=\left\{Y=y_{i}\right\}$ we conclude

$$
P\{X=x\}=\sum_{i=1}^{m} P\left\{X=x, Y=y_{i}\right\}=\sum_{i=1}^{m} P\left\{X=x \mid Y=y_{i}\right\} P\left\{Y=y_{i}\right\}
$$

Note that this also works if Y takes on countably many values.
Example. Suppose that N_{1} and N_{2} are independent random variables with

$$
P\left\{N_{i}=n\right\}=\frac{1}{2^{n+1}}, \quad n=0,1,2, \ldots
$$

Compute $P\left\{N_{1}+N_{2}=7\right\}$.
Solution. Using the notation above, if we let $X=N_{1}+N_{2}, Y=N_{2}, x=7$, and $y_{i}=i$, then

$$
\begin{aligned}
P\left\{N_{1}+N_{2}=7\right\}=\sum_{i=0}^{7} P\left\{N_{1}+N_{2}=7, N_{2}=i\right\} & =\sum_{i=0}^{7} P\left\{N_{1}=7-i, N_{2}=i\right\} \\
& =\sum_{i=0}^{7} P\left\{N_{1}=7-i\right\} P\left\{N_{2}=i\right\}
\end{aligned}
$$

where the last equality follows from the independence of N_{1} and N_{2}. Thus,

$$
\sum_{i=0}^{7} P\left\{N_{1}=7-i\right\} P\left\{N_{2}=i\right\}=\sum_{i=0}^{7} \frac{1}{2^{8-i}} \cdot \frac{1}{2^{i+1}}=\frac{8}{2^{9}}=\frac{1}{64}
$$

In the discrete case, we have seen that the law of total probability is

$$
P\{X=x\}=\sum_{i=1}^{m} P\left\{X=x, Y=y_{i}\right\}=\sum_{i=1}^{m} P\left\{X=x \mid Y=y_{i}\right\} P\left\{Y=y_{i}\right\}
$$

In the continuous case, we know that $P\{X=x\}=0$ for every value of x. Nonetheless, the discrete case motivates the following definition.

Definition. Let $(X, Y)^{\prime}$ be continuous. If $f_{Y}(y)>0$, then the conditional density function of X given $Y=y$ is

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Thus, the law of total probability for continuous random variables takes the form

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{-\infty}^{\infty} f_{X \mid Y=y}(x) f_{Y}(y) \mathrm{d} y
$$

