Lecture \#8: Functions of Multivariate Random Variables

Example (Chapter 1, Problem \#31). Suppose that $(X, Y)^{\prime}$ have joint density

$$
f(x, y)= \begin{cases}x e^{-x-x y} & \text { for } x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the distribution of $X(1+Y)$.
Solution. Let $U=X(1+Y)$ and $V=1+Y$ so that solving for X and Y gives

$$
X=\frac{U}{V} \quad \text { and } \quad Y=V-1
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v^{-1} & -u v^{-2} \\
0 & 1
\end{array}\right|=v^{-1}
$$

The density of $(U, V)^{\prime}$ is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u / v, v-1) \cdot|J|=\frac{u}{v} e^{-u} \cdot \frac{1}{|v|}=\frac{u}{v^{2}} e^{-u}
$$

for $u>0$ and $v>1$. The marginal for U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\int_{1}^{\infty} \frac{u}{v^{2}} e^{-u} \mathrm{~d} v=u e^{-u} \int_{1}^{\infty} \frac{1}{v^{2}} \mathrm{~d} v=u e^{-u}
$$

for $u>0$ (which happens to be the density function of a $\Gamma(2,1)$ random variable). As an added bonus, we have also shown that $X(1+Y)$ and $(1+Y)$ are independent.

Example. Suppose that the random vector $(X, Y)^{\prime}$ has joint density function

$$
f_{X, Y}(x, y)= \begin{cases}e^{-y}, & \text { if } 0<x<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Determine the density function of the random variable $X+Y$.
Solution. If $U=X+Y$ and $V=Y$, then solving for X and Y gives

$$
X=U-V \quad \text { and } \quad Y=V
$$

The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|=1
$$

Therefore, we conclude

$$
\begin{equation*}
f_{U, V}(u, v)=f_{X, Y}(u-v, v) \cdot|J|=e^{-v} \cdot 1=e^{-v} \tag{*}
\end{equation*}
$$

provided that $0<v<u<2 v<\infty$ (or, equivalently, $\frac{u}{2}<v<u$). The marginal for U is given by

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\int_{u / 2}^{u} e^{-v} \mathrm{~d} v=\left.\left(-e^{-v}\right)\right|_{u / 2} ^{u}=e^{-u / 2}-e^{-u}, \quad u>0
$$

In particular, note that U and V are NOT independent, even though ($*$) suggests that they are. The reason, of course, is because of the dependence of u on v in the limits of integration.

Example. The purpose of this example is to prove a relationship between the gamma function and the beta integral that was used last lecture. That is, show that if $a>0$ and $b>0$, then

$$
\int_{0}^{1} x^{a-1}(1-x)^{b-1} \mathrm{~d} x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

Proof. The solution is to consider the product $\Gamma(a) \Gamma(b)$ as a double integral, change variables, and simplify. That is,

$$
\Gamma(a) \Gamma(b)=\left[\int_{0}^{\infty} x^{a-1} e^{-x} \mathrm{~d} x\right]\left[\int_{0}^{\infty} y^{b-1} e^{-y} \mathrm{~d} y\right]=\int_{0}^{\infty} \int_{0}^{\infty} x^{a-1} y^{b-1} e^{-(x+y)} \mathrm{d} x \mathrm{~d} y
$$

Let $u=x+y$ and $v=\frac{x}{x+y}$ so that $x=u v$ and $y=u(1-v)$. The Jacobian of this transformation is

$$
J=\left|\begin{array}{cc}
v & u \\
1-v & -u
\end{array}\right|=-u
$$

implying

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} x^{a-1} y^{b-1} e^{-(x+y)} \mathrm{d} x \mathrm{~d} y & =\int_{0}^{\infty} \int_{0}^{1}(u v)^{a-1}(u(1-v))^{b-1} e^{-u} u \mathrm{~d} u \mathrm{~d} v \\
& =\left[\int_{0}^{\infty} u^{a+b-1} e^{-u} \mathrm{~d} u\right]\left[\int_{0}^{1} v^{a-1}(1-v)^{b-1} \mathrm{~d} v\right] \\
& =\Gamma(a+b) \int_{0}^{1} v^{a-1}(1-v)^{b-1} \mathrm{~d} v
\end{aligned}
$$

as required.

