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Lecture #7: Functions of Multivariate Random Variables

Example (Chapter 1, Problem #8). Suppose that X 2 N (0, 1) and Y 2 N (0, 1) are
independent random variables. Show that X/Y 2 C(0, 1).

Solution. We start with a bivariate random vector (X, Y )0 (i.e., two random variables), but
we want the distribution of just one random variable, namely X/Y .

The “trick” is to let U = X/Y and to introduce an auxiliary variable V which may be
arbitrarily chosen. (Although it may be arbitrary, choose it suitably!)

Let U = X/Y and V = Y so that solving for X and Y gives

X = UV and Y = V.

The Jacobian of this transformation is given by

J =
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The density of (U, V )0 is therefore given by

f
U,V

(u, v) = f
X,Y

(uv, v) · |J | = |v|f
X

(uv)f
Y

(v)

using the assumed independence of X and Y . Substituting in the corresponding densities
gives
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provided �1 < u, v < 1. The marginal density of U is
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since the integrand is even. Making the substitution z = �v2(u2 + 1)/2 so that dz =
�v(u2 + 1) dv gives

f
U
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1

⇡(u2 + 1)
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for �1 < u < 1. We recognize that this is the density of a C(0, 1) random variable, and
so we conclude that U = X/Y 2 C(0, 1).

Example (Chapter 1, Problem #39). Suppose that X
1

2 �(a
1

, b) and X
2

2 �(a
2

, b) are in-
dependent random variables. Show that X

1

/X
2

and X
1

+X
2

are independent, and determine
their distributions.
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Solution. Since X
1

and X
2

are independent, their joint density is

f
X1,X2(x1
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2
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)

=
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0, otherwise.

Let U = X
1

/X
2

and V = X
1

+X
2

so that solving for X
1

and X
2

gives

X
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U + 1
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.

The Jacobian of this transformation is given by

J =
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The density of (U, V )0 is therefore given by

f
U,V

(u, v) = f
X1,X2(uv(1 + u)�1, v(1 + u)�1) · |J |

=
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provided that 0 < u < 1, 0 < v < 1. The marginal density of U is

f
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(u) =
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To evaluate Z 1

0

va1+a2�1e�v/b dv

we make the substitution z = v

b

so that dz = 1

b

dv. This implies that
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This now implies that
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, u > 0.

To find the marginal density of V we observe that since we can write the joint density as a
product of a function of u only multiplied by a function of v only, we conclude that U and
V are independent. That is,

f
U,V

(u, v) = f
U

(u) · f
V

(v)
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and so using the density f
U

(u) that we just found gives

f
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=
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for v > 0. Notice that V = X
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+X
2
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, b).

It is also possible to find the marginal density of V by integrating the joint density. That is,
we observe that

f
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Making the substitution z = u/(1 + u) so that dz = (1 + u)�2 du and u = z/(1� z) implies
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We recognize this as a beta integral so that
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from which we conclude
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for v > 0 as before.
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