Lecture \#7: Functions of Multivariate Random Variables

Example (Chapter 1, Problem \#8). Suppose that $X \in \mathcal{N}(0,1)$ and $Y \in \mathcal{N}(0,1)$ are independent random variables. Show that $X / Y \in C(0,1)$.

Solution. We start with a bivariate random vector $(X, Y)^{\prime}$ (i.e., two random variables), but we want the distribution of just one random variable, namely X / Y.
The "trick" is to let $U=X / Y$ and to introduce an auxiliary variable V which may be arbitrarily chosen. (Although it may be arbitrary, choose it suitably!)
Let $U=X / Y$ and $V=Y$ so that solving for X and Y gives

$$
X=U V \quad \text { and } \quad Y=V
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
0 & 1
\end{array}\right|=v
$$

The density of $(U, V)^{\prime}$ is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u v, v) \cdot|J|=|v| f_{X}(u v) f_{Y}(v)
$$

using the assumed independence of X and Y. Substituting in the corresponding densities gives

$$
f_{U, V}(u, v)=|v| \cdot \frac{1}{\sqrt{2 \pi}} e^{-u^{2} v^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2}=\frac{|v|}{2 \pi} e^{-\frac{v^{2}}{2}\left(u^{2}+1\right)}
$$

provided $-\infty<u, v<\infty$. The marginal density of U is

$$
\begin{aligned}
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\int_{-\infty}^{\infty} \frac{|v|}{2 \pi} e^{-\frac{v^{2}}{2}\left(u^{2}+1\right)} \mathrm{d} v & =2 \int_{0}^{\infty} \frac{v}{2 \pi} e^{-\frac{v^{2}}{2}\left(u^{2}+1\right)} \mathrm{d} v \\
& =\int_{0}^{\infty} \frac{v}{\pi} e^{-\frac{v^{2}}{2}\left(u^{2}+1\right)} \mathrm{d} v
\end{aligned}
$$

since the integrand is even. Making the substitution $z=-v^{2}\left(u^{2}+1\right) / 2$ so that $\mathrm{d} z=$ $-v\left(u^{2}+1\right) \mathrm{d} v$ gives

$$
f_{U}(u)=\frac{1}{\pi\left(u^{2}+1\right)} \int_{0}^{\infty} e^{-z} \mathrm{~d} z=\frac{1}{\pi\left(u^{2}+1\right)}
$$

for $-\infty<u<\infty$. We recognize that this is the density of a $C(0,1)$ random variable, and so we conclude that $U=X / Y \in C(0,1)$.

Example (Chapter 1, Problem \#39). Suppose that $X_{1} \in \Gamma\left(a_{1}, b\right)$ and $X_{2} \in \Gamma\left(a_{2}, b\right)$ are independent random variables. Show that X_{1} / X_{2} and $X_{1}+X_{2}$ are independent, and determine their distributions.

Solution. Since X_{1} and X_{2} are independent, their joint density is

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right) \\
& = \begin{cases}\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} x_{1}^{a_{1}-1} x_{2}^{a_{2}-1} \frac{1}{b^{a_{1}+a_{2}}} e^{-x_{1} / b-x_{2} / b}, & \text { for } x_{1}>0, x_{2}>0, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Let $U=X_{1} / X_{2}$ and $V=X_{1}+X_{2}$ so that solving for X_{1} and X_{2} gives

$$
X_{1}=\frac{U V}{U+1} \quad \text { and } \quad X_{2}=\frac{V}{U+1}
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{cc}
\frac{\partial x_{1}}{\partial u} & \frac{\partial x_{1}}{\partial v} \\
\frac{\partial x_{2}}{\partial u} & \frac{\partial x_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v(1+u)^{-2} & u(1+u)^{-1} \\
-v(1+u)^{-2} & (1+u)^{-1}
\end{array}\right|=\frac{v}{(1+u)^{2}}
$$

The density of $(U, V)^{\prime}$ is therefore given by

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X_{1}, X_{2}}\left(u v(1+u)^{-1}, v(1+u)^{-1}\right) \cdot|J| \\
& =\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)}\left(u v(1+u)^{-1}\right)^{a_{1}-1}\left(v(1+u)^{-1}\right)^{a_{2}-1} \frac{1}{b^{a_{1}+a_{2}}} e^{-u v(1+u)^{-1} / b-v(1+u)^{-1} / b} \cdot \frac{|v|}{(1+u)^{2}} \\
& =\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1} v^{a_{1}+a_{2}-1}}{(1+u)^{a_{1}+a_{2}}} e^{-v / b}
\end{aligned}
$$

provided that $0<u<\infty, 0<v<\infty$. The marginal density of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} \int_{0}^{\infty} v^{a_{1}+a_{2}-1} e^{-v / b} \mathrm{~d} v
$$

To evaluate

$$
\int_{0}^{\infty} v^{a_{1}+a_{2}-1} e^{-v / b} \mathrm{~d} v
$$

we make the substitution $z=\frac{v}{b}$ so that $\mathrm{d} z=\frac{1}{b} \mathrm{~d} v$. This implies that

$$
\begin{aligned}
\int_{0}^{\infty} v^{a_{1}+a_{2}-1} e^{-v / b} \mathrm{~d} v=\int_{0}^{\infty}(b z)^{a_{1}+a_{2}-1} e^{-z} b \mathrm{~d} z & =b^{a_{1}+a_{2}} \int_{0}^{\infty} z^{a_{1}+a_{2}-1} e^{-z} \mathrm{~d} z \\
& =b^{a_{1}+a_{2}} \Gamma\left(a_{1}+a_{2}\right)
\end{aligned}
$$

This now implies that

$$
f_{U}(u)=\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} b^{a_{1}+a_{2}} \Gamma\left(a_{1}+a_{2}\right)=\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}}, u>0 .
$$

To find the marginal density of V we observe that since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that U and V are independent. That is,

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

and so using the density $f_{U}(u)$ that we just found gives

$$
f_{V}(v)=\frac{f_{U, V}(u, v)}{f_{U}(u)}=\frac{\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1} v^{a_{1}+a_{2}-1}}{(1+u)^{a_{1}+a_{2}}} e^{-v / b}}{\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}}}=\frac{1}{\Gamma\left(a_{1}+a_{2}\right)} v^{a_{1}+a_{2}-1} \frac{1}{b^{a_{1}+a_{2}}} e^{-v / b}
$$

for $v>0$. Notice that $V=X_{1}+X_{2} \in \Gamma\left(a_{1}+a_{2}, b\right)$.
It is also possible to find the marginal density of V by integrating the joint density. That is, we observe that

$$
f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} u=\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} v^{a_{1}+a_{2}-1} e^{-v / b} \int_{0}^{\infty} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} \mathrm{~d} u
$$

Making the substitution $z=u /(1+u)$ so that $\mathrm{d} z=(1+u)^{-2} \mathrm{~d} u$ and $u=z /(1-z)$ implies

$$
\begin{aligned}
\int_{0}^{\infty} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} \mathrm{~d} u=\int_{0}^{\infty}\left(\frac{u}{1+u}\right)^{a_{1}+a_{2}-2} \cdot u^{1-a_{2}} \cdot \frac{1}{(1+u)^{2}} \mathrm{~d} u & =\int_{0}^{1} z^{a_{1}+a_{2}-2}\left(\frac{z}{1-z}\right)^{1-a_{2}} \mathrm{~d} z \\
& =\int_{0}^{1} z^{a_{1}-1}(1-z)^{a_{2}-1} \mathrm{~d} z
\end{aligned}
$$

We recognize this as a beta integral so that

$$
\int_{0}^{1} z^{a_{1}-1}(1-z)^{a_{2}-1} \mathrm{~d} z=\frac{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)}{\Gamma\left(a_{1}+a_{2}\right)}
$$

from which we conclude

$$
f_{V}(v)=\frac{1}{\Gamma\left(a_{1}+a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} v^{a_{1}+a_{2}-1} e^{-v / b}
$$

for $v>0$ as before.

