Lecture \#6: The Jacobian for Polar Coordinates

Recall. Suppose that \mathbf{X} is a random vector with joint density function $f_{\mathbf{X}}(\bar{x})$. If we define the random vector $\mathbf{Y}=g(\mathbf{X})$, then we proved last lecture that the density for \mathbf{Y} is given by

$$
f_{\mathbf{Y}}(\bar{y})=f_{\mathbf{X}}(h(\bar{y})) \cdot|J|
$$

where $h=g^{-1}$ so that $\mathbf{X}=g^{-1}(\mathbf{Y})=h(\mathbf{Y})$, and J is the Jacobian.
Example. Let $X, Y \in \operatorname{Exp}(1)$ be independent. Prove that $\frac{X}{X+Y}$ and $X+Y$ are independent random variables, and determine their distributions.

Solution. Let $U=\frac{X}{X+Y}$ and $V=X+Y$ so that

$$
X=U V \quad \text { and } \quad Y=V-U V
$$

We compute the Jacobian of this transformation as

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
-v & 1-u
\end{array}\right|=v
$$

By the result (\dagger) from Lecture \#4, we conclude

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}(u v, v-u v) \cdot v \\
& =f_{X}(u v) \cdot f_{Y}(v-u v) \cdot v \quad \text { by the assumed independence of } X \text { and } Y \\
& =e^{-u v} \cdot e^{-v+u v} \cdot v \\
& =v e^{-v}
\end{aligned}
$$

for $0<u<1, v>0$. In other words,

$$
f_{U, V}(u, v)= \begin{cases}1 \cdot v e^{-v}, & \text { if } 0<u<1 \text { and } v>0 \\ 0, & \text { otherwise }\end{cases}
$$

That is, since $f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)$, we see that $U \in U(0,1)$ and $V \in \Gamma(2,1)$ are independent random variables.

Example. Determine the Jacobian for the change-of-variables from cartesian coordinates to polar coordinates.

Solution. The traditional letters to use are

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta .
$$

However, to agree with the notation from class, we let

$$
x=u \cos v \quad \text { and } \quad y=u \sin v .
$$

In other words, our original variables are $\bar{x}=(x, y)$, and our new variables are $\bar{y}=(u, v)$. The variables \bar{x} and \bar{y} are related through the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined implicitly by

$$
g(\bar{x})=g(x, y)=\left(g_{1}(x, y), g_{2}(x, y)\right)=(u, v) .
$$

In other words,

$$
u=\sqrt{x^{2}+y^{2}} \text { and } \quad v=\arctan (y / x)
$$

We now compute the required partial derivatives:

$$
\frac{\partial x}{\partial u}=\cos v, \frac{\partial x}{\partial v}=-u \sin v, \frac{\partial y}{\partial u}=\sin v, \frac{\partial y}{\partial v}=u \cos v
$$

Therefore, the Jacobian is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u \cos ^{2} v+u \sin ^{2} v=u
$$

Thus, using the traditional notation, $|J|=r$. i.e., $\mathrm{d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$.
Exercise. Consider the three-dimensional change of variables to cylindrical coordinates given by

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

Compute the Jacobian of this transformation and show that $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=r \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z$.
Exercise. Consider the three-dimensional change of variables to spherical coordinates given by

$$
x=\rho \cos \theta \sin \varphi, \quad y=\rho \sin \theta \sin \varphi, \quad z=\rho \cos \varphi .
$$

Compute the Jacobian of this transformation and show that $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \varphi$.

