Statistics 351 (Fall 2015)
September 18, 2015
Prof. Michael Kozdron

Lecture \#5: The Transformation Theorem

Reference. §1.2.1 pages 20-23
Last class we discussed how to perform a change-of-variables in the one-dimensional case. In multiple dimensions, the idea is the same, although things get notationally messier.

Recall. The one-dimensional change-of-variables formula is usually written as

$$
\int_{a}^{b} f(h(x)) h^{\prime}(x) \mathrm{d} x=\int_{h(a)}^{h(b)} f(u) \mathrm{d} u
$$

i.e., $u=h(x), \mathrm{d} u=h^{\prime}(x) \mathrm{d} x$.

We can write this as

$$
\begin{equation*}
\int_{h(a)}^{h(b)} f(x) \mathrm{d} x=\int_{a}^{b} f(h(y)) h^{\prime}(y) \mathrm{d} y . \tag{*}
\end{equation*}
$$

It is in this form that there is a resemblance to the multidimensional formula.
Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be a random vector, and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a sufficiently smooth function. That is, we write $g=\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Set $\mathbf{Y}=g(\mathbf{X})$ so that $\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}=\left(g_{1}(\mathbf{X}), \ldots, g_{n}(\mathbf{X})\right)^{\prime}$ where $g_{i}(\mathbf{X})=g_{i}\left(X_{1}, \ldots, X_{n}\right)$. Writing things out explicitly gives

$$
Y_{1}=g_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, Y_{n}=g_{n}\left(X_{1}, \ldots, X_{n}\right)
$$

Let $h=g^{-1}$ so that $\mathbf{X}=h(\mathbf{Y})$, and let

$$
J=\left|\frac{\mathrm{d}(\bar{x})}{\mathrm{d}(\bar{y})}\right|=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{n}}{\partial y_{1}} & \frac{\partial x_{n}}{\partial y_{2}} & \cdots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right|
$$

be the Jacobian.
Let $B \subset \mathbb{R}^{n}$. Our goal is to compute $P\{\mathbf{Y} \in B\}$ which we will do in two ways. The first way is as follows. Let $f_{\mathbf{Y}}(\bar{y})$ denote the density function for \mathbf{Y} so that

$$
\begin{equation*}
P\{\mathbf{Y} \in B\}=\int_{B} \ldots \int_{\mathbf{Y}}(\bar{y}) \mathrm{d} \bar{y} \tag{**}
\end{equation*}
$$

The second way is by changing variables. Let $h=g^{-1}$ so that $h(B)=\{\bar{x}: g(\bar{x}) \in B\}$. Then, in analogy with the one-dimensional case, we have

$$
P\{\mathbf{Y} \in B\}=P\{g(\mathbf{X}) \in B\}=P\left\{\mathbf{X} \in g^{-1}(B)\right\}=P\{\mathbf{X} \in h(B)\}=\iint_{h(B)} \cdots f_{\mathbf{X}}(\bar{x}) \mathrm{d} \bar{x}
$$

and a change-of variables $\bar{y}=g(\bar{x})$ (i.e., $\bar{x}=h(\bar{y}), \mathrm{d} \bar{x}=|J| \mathrm{d} \bar{y})$ gives

$$
\begin{equation*}
\int_{h(B)}^{\ldots} \int_{\mathbf{X}} f_{\mathbf{X}}(\bar{x}) \mathrm{d} \bar{x}=\iint_{B} \ldots f_{\mathbf{X}}(h(\bar{y})) \cdot|J| \mathrm{d} \bar{y} \tag{***}
\end{equation*}
$$

Note that if we are in one dimension, then $(* * *)$ reduces to $(*)$.
We now see that $(*)$ and $(* *)$ give two distinct expressions for $P\{\mathbf{Y} \in B\}$, namely

$$
P\{\mathbf{Y} \in B\}=\int_{B} \ldots \int_{\mathbf{Y}}(\bar{y}) \mathrm{d} \bar{y}=\int_{B} \ldots \int f_{\mathbf{X}}(h(\bar{y})) \cdot|J| \mathrm{d} \bar{y}
$$

Since this is true for any $B \subset \mathbb{R}^{n}$ we conclude that the integrands must be equal; that is,

$$
f_{\mathbf{Y}}(\bar{y})=f_{\mathbf{X}}(h(\bar{y})) \cdot|J| .
$$

In other words, this gives us a formula for the density of the random vector $\mathbf{Y}=g(\mathbf{X})$ in terms of the density of the random vector $\mathbf{X}=g^{-1}(\mathbf{Y})=h(\mathbf{Y})$.

Example. Let $X, Y \in \mathcal{N}(0,1)$ be independent. Prove that $X+Y$ and $X-Y$ are independent $\mathcal{N}(0,2)$ random variables.

Solution. The fact that $X+Y$ and $X-Y$ each have a $\mathcal{N}(0,2)$ distribution can be proved using moment generating functions as done in Stat 251. It is the independence of $X+Y$ and $X-Y$ that is newly proved.
Let $U=X+Y$ and $V=X-Y$ so that

$$
X=\frac{U+V}{2} \quad \text { and } \quad Y=\frac{U-V}{2} .
$$

That is, $\mathbf{X}=(X, Y)^{\prime}$ and $\mathbf{Y}=(U, V)^{\prime}$. We also find

- $g(\mathbf{X})=g(X, Y)=(X+Y, X-Y)=(U, V)=\mathbf{Y}$, and
- $h(\mathbf{Y})=h(U, V)=\left(\frac{U+V}{2}, \frac{U-V}{2}\right)=(X, Y)=\mathbf{X}$.

We compute the Jacobian as

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right|=-1 / 2 .
$$

By the previous result (\dagger), we conclude

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}(h(u, v)) \cdot|J| \\
& =f_{X, Y}((u+v) / 2,(u-v) / 2) \cdot 1 / 2 \\
& =1 / 2 \cdot f_{X}((u+v) / 2) \cdot f_{Y}((u-v) / 2) \quad \text { by the assumed independence of } X \text { and } Y \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \frac{(u+v)^{2}}{4}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \frac{(u-v)^{2}}{4}} \\
& =\frac{1}{\sqrt{2 \pi \cdot 2}} e^{-\frac{1}{2} \frac{u^{2}}{2}} \cdot \frac{1}{\sqrt{2 \pi \cdot 2}} e^{-\frac{1}{2} \frac{v^{2}}{2}}
\end{aligned}
$$

for $-\infty<u, v<\infty$. In other words, since $f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)$ we conclude that $U=X+Y$ and $V=X-Y$ are independent $\mathcal{N}(0,2)$ random variables.

