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Lecture #5: The Transformation Theorem

Reference. §1.2.1 pages 20–23

Last class we discussed how to perform a change-of-variables in the one-dimensional case.
In multiple dimensions, the idea is the same, although things get notationally messier.

Recall. The one-dimensional change-of-variables formula is usually written as

Z
b

a

f(h(x))h0(x) dx =

Z
h(b)

h(a)

f(u) du,

i.e., u = h(x), du = h0(x) dx.

We can write this as Z
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h(a)

f(x) dx =
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f(h(y))h0(y) dy. (⇤)

It is in this form that there is a resemblance to the multidimensional formula.
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be the Jacobian.

Let B ⇢ Rn. Our goal is to compute P{Y 2 B} which we will do in two ways.

The first way is as follows. Let fY(y) denote the density function for Y so that

P{Y 2 B} =

Z
· · ·

Z

B

fY(y) dy. (⇤⇤)
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The second way is by changing variables. Let h = g�1 so that h(B) = {x : g(x) 2 B}. Then,
in analogy with the one-dimensional case, we have

P{Y 2 B} = P{g(X) 2 B} = P{X 2 g�1(B)} = P{X 2 h(B)} =

Z
· · ·

Z

h(B)

fX(x) dx

and a change-of variables y = g(x) (i.e., x = h(y), dx = |J | dy) gives
Z

· · ·

Z

h(B)

fX(x) dx =

Z
· · ·
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B

fX(h(y)) · |J | dy (⇤ ⇤ ⇤)

Note that if we are in one dimension, then (⇤ ⇤ ⇤) reduces to (⇤).

We now see that (⇤) and (⇤⇤) give two distinct expressions for P{Y 2 B}, namely

P{Y 2 B} =

Z
· · ·

Z

B

fY(y) dy =

Z
· · ·

Z

B

fX(h(y)) · |J | dy.

Since this is true for any B ⇢ Rn we conclude that the integrands must be equal; that is,

fY(y) = fX(h(y)) · |J |. (†)

In other words, this gives us a formula for the density of the random vector Y = g(X) in
terms of the density of the random vector X = g�1(Y) = h(Y).

Example. LetX, Y 2 N (0, 1) be independent. Prove thatX+Y andX�Y are independent
N (0, 2) random variables.

Solution. The fact that X + Y and X � Y each have a N (0, 2) distribution can be proved
using moment generating functions as done in Stat 251. It is the independence of X + Y
and X � Y that is newly proved.

Let U = X + Y and V = X � Y so that

X =
U + V

2
and Y =

U � V

2
.

That is, X = (X, Y )0 and Y = (U, V )0. We also find

• g(X) = g(X, Y ) = (X + Y,X � Y ) = (U, V ) = Y, and

• h(Y) = h(U, V ) =
�
U+V

2

, U�V

2

�
= (X, Y ) = X.

We compute the Jacobian as
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By the previous result (†), we conclude

f
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for �1 < u, v < 1. In other words, since f
U,V

(u, v) = f
U

(u) · f
V

(v) we conclude that
U = X + Y and V = X � Y are independent N (0, 2) random variables.
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