## Lecture \#3: Multivariate Random Variables

Let $(X, Y)^{\prime}$ be a random vector. (With only two components it is traditional to use $X$ and $Y$ instead of $X_{1}$ and $X_{2}$.)
Sometimes we are interested in the distribution of just one component.
In the continuous case, we have

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
$$

and

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) \mathrm{d} u=\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
$$

We call $f_{X}(x)$ the marginal density (function) for $X$ (or just marginal or just density) and $F_{X}(x)$ the (marginal) distribution function for $X$. Similar formulæ hold for $f_{Y}(y)$ and $F_{Y}(y)$.

Definition. The random variables $X$ and $Y$ are independent if and only if

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y) .
$$

i.e., iff $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$ in the continuous case.

Exercise. Write down the definition of the marginal mass function and the marginal distribution function in the discrete case.

Example (Chapter 1, Exercise 1.2). Suppose that

$$
(X, Y)^{\prime}=\binom{X}{Y}
$$

denotes the coordinates of a dart thrown uniformly at random at a circular dart board. To be specific, suppose that the circle is centred at the origin and has radius 1 . We can describe the random vector $(X, Y)^{\prime}$ by its density function

$$
f_{X, Y}(x, y)= \begin{cases}1 / \pi, & \text { if } x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Suppose that $(X, Y)^{\prime}$ is a point uniformly distributed in the unit disk so that

$$
f_{X, Y}(x, y)= \begin{cases}1 / \pi, & \text { if } x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the distribution of $X$.


Figure 1: The region $\left\{x^{2}+y^{2} \leq 1\right\}$.
Solution. By definition,

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \text { easy step! } \\
& =\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} \mathrm{~d} y \text { watch limits! }
\end{aligned}
$$

That is, if $x$ is fixed between -1 and 1 , then $y$ ranges between $-\sqrt{1-x^{2}}$ and $\sqrt{1-x^{2}}$. Therefore,

$$
f_{X}(x)=\frac{2}{\pi} \sqrt{1-x^{2}}, \quad-1 \leq x \leq 1
$$

Similarly,

$$
f_{Y}(y)=\frac{2}{\pi} \sqrt{1-y^{2}}, \quad-1 \leq y \leq 1
$$

We can now ask the following two questions.

- Are $X$ and $Y$ independent?
- Are $X$ and $Y$ uncorrelated?

Clearly, $X$ and $Y$ are NOT independent since $f_{X}(x) \cdot f_{Y}(y)$ does NOT equal $f_{X, Y}(x, y)$. It turns out, however, that $X$ and $Y$ are uncorrelated.

Recall. If $X, Y$ are random variables, then

- $\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y)$, and
- $\operatorname{Corr}(X, Y)=\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.

Note that $\rho=\rho_{X, Y}$ is a scale-invariant real number with $-1 \leq \rho \leq 1$. Also note that in the continuous case,

$$
\mathbb{E}(X Y)=\iint_{\mathbb{R}^{2}} x y f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

In order to show that $X$ and $Y$ are uncorrelated, we need to show that $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-$ $(\mathbb{E} X)(\mathbb{E} Y)=0$. Since $f_{X, Y}(x, y)=1 / \pi$ for $x^{2}+y^{2} \leq 1$, we have

$$
\mathbb{E}(X Y)=\iint_{\left\{x^{2}+y^{2} \leq 1\right\}} x y \cdot \frac{1}{\pi} \cdot \mathrm{~d} x \mathrm{~d} y
$$

To compute this double integral, use polar coordinates: $x=r \cos \theta, y=r \sin \theta, 0 \leq r \leq 1$, $0 \leq \theta<2 \pi, \mathrm{~d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$. That is,

$$
\iint_{\left\{x^{2}+y^{2} \leq 1\right\}} x y \cdot \frac{1}{\pi} \cdot \mathrm{~d} x \mathrm{~d} y=\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} r^{3} \cos \theta \sin \theta \mathrm{~d} r \mathrm{~d} \theta=\frac{1}{4 \pi} \int_{0}^{2 \pi} \cos \theta \sin \theta \mathrm{~d} r \mathrm{~d} \theta=0 .
$$

Furthermore, we find

$$
\mathbb{E}(X)=\int_{-1}^{1} x \cdot \frac{2}{\pi} \sqrt{1-x^{2}} \mathrm{~d} x=0 \quad \text { and } \mathbb{E}(Y)=\int_{-1}^{1} y \cdot \frac{2}{\pi} \sqrt{1-y^{2}} \mathrm{~d} y=0
$$

recognizing that the integral of an odd function over a symmetric interval is 0 . (Or, one can compute the integrals via first-year calculus substitutions.)

