Lecture \#1: Introduction to Multivariate Probability

Suppose that X is a continuous random variable. We know from Stat 251 that information about X is encoded in its distribution function

$$
F_{X}(x)=P\{X \leq x\}
$$

Saying that X is continuous means that there exists some function $f_{X}: \mathbb{R} \rightarrow[0, \infty)$ with the properties that

- $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$,
- $\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=1$, and
- $F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) \mathrm{d} u$.

Of course, we call f_{X} the (probability) density (function) of X.
Certain densities have special names.
Example. If

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad-\infty<x<\infty
$$

then X is said to have a normal distribution with mean 0 and variance 1 . We write this as either $X \sim \mathcal{N}(0,1)$ or $X \in \mathcal{N}(0,1)$.

Example. Show that

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x=1
$$

Solution. We can prove this result using polar coordinates. (Math 213 is a prerequisite!) Let

$$
I=\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x
$$

so that

$$
I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x\right)^{2}=\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \int_{-\infty}^{\infty} e^{-y^{2} / 2} \mathrm{~d} y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} \mathrm{~d} x \mathrm{~d} y
$$

We recognize that in order to evaluate this integral, we need to change to polar coordinates. Therefore, let $x=r \cos \theta$ and $y=r \sin \theta$ for $0 \leq r<\infty, 0 \leq \theta<2 \pi$, so that $\mathrm{d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$ and

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2} / 2} r \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{2 \pi} \mathrm{~d} \theta=2 \pi
$$

Thus, $I^{2}=2 \pi$ from which we conclude $I=\sqrt{2 \pi}$. In other words,

$$
\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x=\sqrt{2 \pi} \quad \text { or } \quad \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x=1
$$

Remark. The change-of-variables from cartesian coordinates to polar coordinates was of the form

$$
\mathrm{d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta
$$

That is, the old variables x and y were converted to new variables r and θ, but the conversion required the new variables to be multiplied by a function of r and θ, namely r. (In fact, this function is $|J(r, \theta)|=r$.) In this course we will learn how to change variables in general. Our old variables x and y will be converted into new variables u and v with the conversion requiring multiplication by a function of u and v, namely

$$
\mathrm{d} x \mathrm{~d} y=|J(u, v)| \mathrm{d} u \mathrm{~d} v
$$

where the function $J(u, v)$ is called the Jacobian of the transformation.
In fact, the u-substitution from first-year calculus is a special case of this.
Example. If we want to compute

$$
\int x e^{-x^{2}} \mathrm{~d} x
$$

then we let $u=x^{2}$ so that $\mathrm{d} u=2 x \mathrm{~d} x$. To put this in the form of a Jacobian, however, we write $x=\sqrt{u}$ so that

$$
\mathrm{d} x=\frac{1}{2 \sqrt{u}} \mathrm{~d} u
$$

This gives

$$
\int x e^{-x^{2}} \mathrm{~d} x=\int \sqrt{u} e^{-u} \frac{1}{2 \sqrt{u}} \mathrm{~d} u=\frac{1}{2} \int e^{-u} \mathrm{~d} u
$$

