Stat 351 Fall 2015
Assignment \#8 Solutions

1. Recall from Stat 251 that if $X \in N(0,1)$, then $X^{2} \in \chi^{2}(1)$. Furthermore, recall that if Z_{1}, \ldots, Z_{n} are independent with $Z_{j} \in \chi^{2}\left(p_{j}\right)$, then

$$
\sum_{j=1}^{n} Z_{j} \in \chi^{2}\left(p_{1}+\cdots+p_{n}\right)
$$

(That is, the sum of independent chi-squared random variables is itself chi-squared with degrees of freedom additive.) Since

$$
\mathbf{X}^{\prime} \mathbf{X}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

is the sum of n i.i.d. $\chi^{2}(1)$ random variables, we conclude

$$
\mathbf{X}^{\prime} \mathbf{X} \in \chi^{2}(n)
$$

2. (a) Since X and Y are i.i.d. $N(0,1)$, we know that

$$
3 X+4 Y \in N\left(0,3^{2}+4^{2}\right)=N(0,25) .
$$

Normalizing implies that

$$
Z=\frac{3 X+4 Y}{5} \in N(0,1)
$$

Thus,

$$
P(3 X+4 Y>5)=P(Z>1) \doteq 0.1587
$$

using a table of normal probabilities.
2. (b) Since X and Y are independent, we know that

$$
P(\min \{X, Y\}>1)=P(X>1, Y>1)=P(X>1) \cdot P(Y>1) \doteq(0.1587)^{2}
$$

and so

$$
P(\min \{X, Y\}<1) \doteq 1-(0.1587)^{2} \doteq 0.9748
$$

using a table of normal probabilities.
2. (c) Since

$$
P(|\min \{X, Y\}|<1)=P(-1<\min \{X, Y\}<1)=P(\min \{X, Y\}<1)-P(\min \{X, Y\}<-1)
$$

and

$$
P(\min \{X, Y\}<-1)=1-P(\min \{X, Y\}>-1)=1-P(X>-1) \cdot P(Y>-1) \doteq 1-(0.8413)^{2}
$$

we conclude that

$$
\begin{aligned}
P(|\min \{X, Y\}|<1) \doteq\left[1-(0.1587)^{2}\right]-\left[1-(0.8413)^{2}\right] & =(0.8413)^{2}-(0.1587)^{2} \\
& \doteq 0.6826
\end{aligned}
$$

using a table of normal probabilities.
2. (d) Notice that

$$
\max \{X, Y\}-\min \{X, Y\}=|X-Y|
$$

and that $X-Y \in N(0,2)$. Normalizing implies

$$
Z=\frac{X-Y}{\sqrt{2}} \in N(0,1)
$$

and so we find

$$
\begin{aligned}
P(\max \{X, Y\}-\min \{X, Y\}<1)=P(|X-Y|<1) & =P(|Z|<1 / \sqrt{2}) \\
& =P(-1 / \sqrt{2}<Z<1 / \sqrt{2}) \\
& \doteq 0.5205
\end{aligned}
$$

using a table of normal probabilities.
2. (e) Note that $X^{2}+Y^{2} \in \chi^{2}(2)$ as in Problem 1. However, we know that $\chi^{2}(2)=\Gamma(1,2)=$ $\operatorname{Exp}(2)$. Thus, if $Z=X^{2}+Y^{2}$ so that $Z \in \operatorname{Exp}(2)$, then

$$
P\left(X^{2}+Y^{2} \leq 1\right)=P(Z \leq 1)=1-e^{-1 / 2} .
$$

3. (a) By Definition I, we see that $X_{1}-\rho X_{2}$ is normally distributed with mean

$$
E\left(X_{1}-\rho X_{2}\right)=E\left(X_{1}\right)-\rho E\left(X_{2}\right)=0
$$

and variance

$$
\operatorname{var}\left(X_{1}-\rho X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\rho^{2} \operatorname{var}\left(X_{2}\right)-2 \rho \operatorname{cov}\left(X_{1}, X_{2}\right)=1+\rho^{2}-2 \rho^{2}=1-\rho^{2} .
$$

That is, $X_{1}-\rho X_{2}=Y$ where $Y \in N\left(0,1-\rho^{2}\right)$. Hence, $Y=\sqrt{1-\rho^{2}} Z$ where $Z \in N(0,1)$. In other words, there exists a $Z \in N(0,1)$ such that

$$
X_{1}-\rho X_{2}=\sqrt{1-\rho^{2}} Z
$$

3. (b) Since $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ is MVN, and since

$$
Z=\frac{X_{1}}{\sqrt{1-\rho^{2}}}-\frac{\rho X_{2}}{\sqrt{1-\rho^{2}}},
$$

we conclude that $\left(Z, X_{2}\right)^{\prime}$ is also a MVN. Hence, we know from Theorem 5.7.1 that the components of a MVN are independent if and only if they are uncorrelated. We find

$$
\begin{aligned}
\operatorname{cov}\left(Z, X_{2}\right)=\operatorname{cov}\left(\frac{X_{1}}{\sqrt{1-\rho^{2}}}-\frac{\rho X_{2}}{\sqrt{1-\rho^{2}}}, X_{2}\right) & =\frac{1}{\sqrt{1-\rho^{2}}} \operatorname{cov}\left(X_{1}, X_{2}\right)-\frac{\rho}{\sqrt{1-\rho^{2}}} \operatorname{var}\left(X_{2}\right) \\
& =\frac{\rho}{\sqrt{1-\rho^{2}}}-\frac{\rho}{\sqrt{1-\rho^{2}}} \\
& =0
\end{aligned}
$$

which verifies that Z and X_{2} are, in fact, independent.

Exercise 5.3, page 126. Let

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 5.3.1, \mathbf{Y} is MVN with mean

$$
B \overline{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
7 / 2 & 1 / 2 & -1 \\
1 / 2 & 1 / 2 & 0 \\
-1 & 0 & 1 / 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right) .
$$

Hence, we see that $\mathbf{Y} \in N(\overline{0}, \boldsymbol{\Sigma})$ where

$$
\boldsymbol{\Sigma}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right)
$$

We now compute $\operatorname{det}[\boldsymbol{\Sigma}]=10-9=1$ and

$$
\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & -3 \\
0 & -3 & 2
\end{array}\right) .
$$

If we write $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\prime}$, then

$$
\mathbf{y}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}=y_{1}^{2}+5 y_{2}^{2}-6 y_{2} y_{3}+2 y_{3}^{2}
$$

and so the density of \mathbf{Y} is given by

$$
f_{\mathbf{Y}}(\mathbf{y})=\left(\frac{1}{2 \pi}\right)^{3 / 2} \exp \left\{-\frac{1}{2}\left(y_{1}^{2}+5 y_{2}^{2}-6 y_{2} y_{3}+2 y_{3}^{2}\right)\right\} .
$$

Note that this problem could also be solved by observing that $Y_{1} \in N(0,1)$ and

$$
\left(Y_{2}, Y_{3}\right)^{\prime} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)\right)
$$

are independent so that $f_{\mathbf{Y}}(\mathbf{y})=f_{Y_{1}}\left(y_{1}\right) \cdot f_{Y_{2}, Y_{3}}\left(y_{2}, y_{3}\right)$.

