Stat 351 Fall 2015
Assignment \#1 Solutions

Problem 1:

(a) If $X \sim \operatorname{Unif}[1,3]$, then $F_{X}(x)=\frac{x-1}{2}$ for $1 \leq x \leq 3$, and if $Y \sim \mathcal{N}(0,1)$, then

$$
F_{Y}(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

for $-\infty<y<\infty$. Since X and Y are independent, we conclude that

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)=\frac{x-1}{2} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

for $1 \leq x \leq 3$ and $-\infty<y<\infty$. We should also note that if $x<1$, then $F_{X}(x)=0$ and if $x \geq 3$, then $F_{X}(x)=1$. Combining everything we conclude

$$
F_{X, Y}(x, y)= \begin{cases}\frac{x-1}{2} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u, & \text { if } 0 \leq x \leq 2 \text { and }-\infty<y<\infty \\ \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u, & \text { if } x>3 \text { and }-\infty<y<\infty \\ 0, & \text { if } x<1 \text { and }-\infty<y<\infty\end{cases}
$$

(b) We find

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y}\left[\frac{x-1}{2} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u,\right]=\frac{1}{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}
$$

Since $f_{X}(x)=\frac{1}{2}, 1 \leq x \leq 3$, and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2},-\infty<y<\infty$, we see that

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

as required.
(c) If $Z \in \operatorname{Exp}(4)$ is independent of X and Y, then the joint density of $(X, Y, Z)^{\prime}$ is given by

$$
f_{X, Y, Z}(x, y, z)=f_{X}(x) \cdot f_{Y}(y) \cdot f_{Z}(z)=\frac{1}{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} \cdot \frac{1}{4} e^{-z / 4}=\frac{1}{\sqrt{128 \pi}} e^{-\frac{1}{4}\left(z+2 y^{2}\right)}
$$

for $1 \leq x \leq 3,-\infty<y<\infty$, and $z>0$.

Problem 2:

(a) Observe that $\operatorname{cov}(X, Z)=\mathbb{E}(X Z)-\mathbb{E}(X) \mathbb{E}(Z)=\mathbb{E}(X Z)$ since $\mathbb{E}(X)=0$. But $\mathbb{E}(X Z)=$ $\mathbb{E}(X \cdot Y X)=\mathbb{E}\left(X^{2} Y\right)=\mathbb{E}\left(X^{2}\right) \mathbb{E}(Y)=0$ using the assumed independence of Y and X. Hence, we conclude that $\operatorname{cov}(X, Z)=0$.
(b) We see that

$$
\begin{aligned}
P\{Z \geq 1\}=P\{X Y \geq 1\} & =P\{X \geq 1, Y=1\}+P\{X \leq-1, Y=-1\} \\
& =P\{X \geq 1\} P\{Y=1\}+P\{X \leq-1\} P\{Y=-1\} \\
& =\frac{1}{2} P\{X \geq 1\}+\frac{1}{2} P\{X \leq-1\} \\
& =P\{X \geq 1\}
\end{aligned}
$$

using the symmetry of the normal distribution.

Since

$$
P\{X \geq 1, Z \geq 1\}=P\{X \geq 1, X Y \geq 1\}=P\{X \geq 1, Y=1\}=\frac{1}{2} P\{X \geq 1\}
$$

and since

$$
P\{Z \geq 1\} \in(0,1 / 2)
$$

we conclude that

$$
P\{X \geq 1, Z \geq 1\} \neq P\{X \geq 1\} P\{Z \geq 1\}
$$

which implies that X and Z are not independent. (Note that $P\{X \geq 1\}=P\{Z \geq 1\} \doteq$ 0.1587.)
(c) As in (b) we have

$$
\begin{aligned}
P\{Z \geq x\}=P\{X Y \geq x\} & =P\{X \geq x, Y=1\}+P\{X \leq-x, Y=-1\} \\
& =P\{X \geq x\} P\{Y=1\}+P\{X \leq-x\} P\{Y=-1\} \\
& =\frac{1}{2} P\{X \geq x\}+\frac{1}{2} P\{X \leq-x\} \\
& =P\{X \geq x\}
\end{aligned}
$$

using the symmetry of the normal distribution. Since $P\{X \geq x\}=P\{Z \geq x\}$ is equivalent to saying $P\{X \leq x\}=P\{Z \leq x\}$ which in turn is equivalent to saying that $F_{X}(x)=F_{Z}(x)$, we conclude that X and Z have the same distribution (i.e., $Z \in \mathcal{N}(0,1)$).

Problem 3 (Exercise 1.2): This exercise was discussed in class; we just complete the missing details. Since $f_{X, Y}(x, y)=1 / \pi$ for $x^{2}+y^{2} \leq 1$, we have

$$
\mathbb{E}(X Y)=\iint_{\left\{x^{2}+y^{2} \leq 1\right\}} x y \cdot \frac{1}{\pi} \cdot d x d y
$$

To compute this double integral, we use polar coordinates: $x=r \cos \theta, y=r \sin \theta, 0 \leq r \leq 1$, $0 \leq \theta<2 \pi, d x d y=r d r d \theta$, and so

$$
\begin{aligned}
\mathbb{E}(X Y)=\iint_{\left\{x^{2}+y^{2} \leq 1\right\}} x y \cdot \frac{1}{\pi} \cdot d x d y & =\int_{0}^{2 \pi} \int_{0}^{1} r \cos \theta \cdot r \sin \theta \cdot \frac{1}{\pi} \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \frac{r^{3}}{\pi} \cos \theta \sin \theta d r d \theta \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} \cos \theta \sin \theta d \theta \\
& =\frac{1}{8 \pi} \int_{0}^{2 \pi} \sin (2 \theta) d \theta \\
& =\left.\frac{1}{16 \pi} \cos (2 \theta)\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

Furthermore, we find

$$
\mathbb{E}(X)=\int_{-1}^{1} x \cdot \frac{2}{\pi} \sqrt{1-x^{2}} d x \text { and } \mathbb{E}(Y)=\int_{-1}^{1} y \cdot \frac{2}{\pi} \sqrt{1-y^{2}} d y
$$

Therefore, since both of these integrals are the same, we only need to evaluate one of them. Thus, letting $u=1-x^{2}$ so that $d u=-2 x d x$, we find

$$
\mathbb{E}(Y)=\mathbb{E}(X)=\int_{-1}^{1} x \cdot \frac{2}{\pi} \sqrt{1-x^{2}} d x=-\frac{1}{\pi} \int_{0}^{0} \sqrt{u} d u=0 .
$$

Hence, we conclude that $\operatorname{cov}(X, Y)=\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y)=0$ and so X and Y are, in fact, dependent but uncorrelated random variables.

Problem 4 (Exercise 1.3): If $(X, Y)^{\prime}$ is uniformly distributed on the square with corners $(\pm 1, \pm 1)$, then the joint density of $(X, Y)^{\prime}$ is given by

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{4}, & \text { if }-1 \leq x \leq 1,-1 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- The marginal density of X is given by

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

If $-1 \leq x \leq 1$, then the range of possible y values is $-1 \leq y \leq 1$, and so

$$
f_{X}(x)=\int_{-1}^{1} \frac{1}{4} d y=\frac{1}{2}
$$

That is,

$$
f_{X}(x)= \begin{cases}\frac{1}{2}, & \text { if }-1 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Similarly, if $-1 \leq y \leq 1$, then the range of possible x values is $-1 \leq x \leq 1$, and so

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{-1}^{1} \frac{1}{4} d x=\frac{1}{2}
$$

That is,

$$
f_{Y}(y)= \begin{cases}\frac{1}{2}, & \text { if }-1 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Since $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$, we conclude that X and Y are independent.

- If X and Y are independent, then they are necessarily uncorrelated since $E(X Y)=E(X) E(Y)$ so that

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=0
$$

Problem 5 (Exercise 1.1): Since the volume of the unit sphere in \mathbb{R}^{3} is $4 \pi / 3$, the joint density of $(X, Y, Z)^{\prime}$ is

$$
f_{X, Y, Z}(x, y, z)= \begin{cases}\frac{3}{4 \pi}, & \text { if } x^{2}+y^{2}+z^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- Therefore, the marginal density of $(X, Y)^{\prime}$ is given by

$$
f_{X, Y}(x, y)=\int_{-\infty}^{\infty} f_{X, Y, Z}(x, y, z) d z
$$

If x, y, z are constrained to have $x^{2}+y^{2}+z^{2} \leq 1$, then for fixed x with $-1 \leq x \leq 1$, the range of possible y values is $-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$, and that the range of z is $-\sqrt{1-x-y^{2}} \leq z \leq \sqrt{1-x^{2}-y^{2}}$. It therefore follows that

$$
f_{X, Y}(x, y)=\int_{-\sqrt{1-x-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} \frac{3}{4 \pi} d z=\frac{3}{2 \pi} \sqrt{1-x^{2}-y^{2}}
$$

for $-1 \leq x \leq 1$ and $-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$. In other words,

$$
f_{X, Y}(x, y)= \begin{cases}\frac{3}{2 \pi} \sqrt{1-x^{2}-y^{2}}, & \text { if } x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- The marginal density of X is then given by

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y, Z}(x, y, z) d z d y
$$

From our work above, we find that if $-1 \leq x \leq 1$, then

$$
f_{X}(x)=\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{3}{2 \pi} \sqrt{1-x^{2}-y^{2}} d y
$$

This can be solved with a u-substitution. Let $y=\left(\sqrt{1-x^{2}}\right) \cdot \sin u$ so that

$$
d y=\left(\sqrt{1-x^{2}}\right) \cdot \cos u d u
$$

and so

$$
\begin{aligned}
\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{3}{2 \pi} \sqrt{1-x^{2}-y^{2}} d y & =\frac{3}{2 \pi}\left(1-x^{2}\right) \int_{\sin ^{-1}(-1)}^{\sin ^{-1}(1)}\left(\sqrt{1-\sin ^{2} u}\right) \cdot \cos u d u \\
& =\frac{3}{2 \pi}\left(1-x^{2}\right) \int_{-\pi / 2}^{\pi / 2} \cos ^{2} u d u
\end{aligned}
$$

being careful to watch our new limits of integration and remembering that $\sin ^{-1}(-1)=-\pi / 2$ and $\sin ^{-1}(1)=\pi / 2$. Recalling the half-angle identities for cosine, we find

$$
\int \cos ^{2} u d u=\int \frac{1}{2}+\frac{1}{2} \cos (2 u) d u=\frac{u}{2}+\frac{1}{4} \sin (2 u)
$$

and so

$$
\begin{aligned}
\frac{3}{2 \pi}\left(1-x^{2}\right) \int_{-\pi / 2}^{\pi / 2} \cos ^{2} u d u & =\frac{3}{2 \pi}\left(1-x^{2}\right)\left[\frac{u}{2}+\frac{1}{4} \sin (2 u)\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{3}{2 \pi}\left(1-x^{2}\right)\left[\frac{\pi / 2}{2}-\frac{-\pi / 2}{2}\right] \\
& =\frac{3}{4}\left(1-x^{2}\right)
\end{aligned}
$$

In summary,

$$
f_{X}(x)= \begin{cases}\frac{3}{4}\left(1-x^{2}\right), & \text { if }-1 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Note: You can check that f_{X} is, in fact, a density by verifying that

$$
\int_{-1}^{1} \frac{3}{4}\left(1-x^{2}\right) d x=1
$$

Problem 6: Since X_{1}, X_{2}, X_{3} are independent and identically distributed, by can immediately conclude by symmetry that the 6 events

$$
\begin{aligned}
& \left\{X_{1}<X_{2}<X_{3}\right\},\left\{X_{1}<X_{3}<X_{2}\right\},\left\{X_{2}<X_{1}<X_{3}\right\}, \\
& \left\{X_{2}<X_{3}<X_{1}\right\},\left\{X_{3}<X_{1}<X_{2}\right\},\left\{X_{3}<X_{2}<X_{1}\right\}
\end{aligned}
$$

are equally likely. Since X_{1}, X_{2}, X_{3} are continuous random variables, we know that events such as $\left\{X_{1}=X_{2}\right\}$ have probability zero. Thus, we conclude that these six events are exhaustive; that is,

$$
\begin{aligned}
& P\left\{X_{1}<X_{2}<X_{3}\right\}=P\left\{X_{1}<X_{3}<X_{2}\right\}=P\left\{X_{2}<X_{1}<X_{3}\right\} \\
& \quad=P\left\{X_{2}<X_{3}<X_{1}\right\}=P\left\{X_{3}<X_{1}<X_{2}\right\}=P\left\{X_{3}<X_{2}<X_{1}\right\} \\
& \quad=\frac{1}{6} .
\end{aligned}
$$

It now follows that
(a) $P\left\{X_{1}>X_{2}\right\}=P\left\{X_{2}<X_{1}<X_{3}\right\}+P\left\{X_{2}<X_{3}<X_{1}\right\}+P\left\{X_{3}<X_{2}<X_{1}\right\}=\frac{1}{2}$,
(b) $P\left\{X_{1}>X_{2} \mid X_{1}>X_{3}\right\}=P\left\{X_{2}<X_{3}<X_{1}\right\}+P\left\{X_{3}<X_{2}<X_{1}\right\}=\frac{2}{3}$,
(c) $P\left\{X_{1}>X_{2} \mid X_{1}<X_{3}\right\}=P\left\{X_{2}<X_{1}<X_{3}\right\}=\frac{1}{6}$.

