
Stat 351 Fall 2015
Chapter 5 Solutions

Problem #2. Let X = (X,Y )′ with

X ∈ N
((

0
0

)
,

(
1 ρ
ρ 1

))
,

and consider the change of variables to polar coordinates (R,Θ)′. The inverse of this transformation
is given by

x = r cos θ and y = r sin θ

for 0 ≤ θ < 2π, r > 0 so that the Jacobian is

J =

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Since the density of (X,Y )′ is

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

}
, −∞ < x, y <∞,

it now follows from Theorem 1.2.1 that the density of (R,Θ)′ is

fR,Θ(r, θ) = fX,Y (r cos θ, r sin θ) · |J |
= rfX,Y (r cos θ, r sin θ)

=
r

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(r2 cos2 θ − 2ρr2 sin θ cos θ + r2 sin2 θ)

}
=

r

2π
√

1− ρ2
exp

{
−r

2(1− ρ sin 2θ)

2(1− ρ2)

}

for 0 ≤ θ < 2π, r > 0. The marginal density for Θ is therefore given by

fΘ(θ) =

∫ ∞
0

r

2π
√

1− ρ2
exp

{
−r

2(1− ρ sin 2θ)

2(1− ρ2)

}
dr

=
1

2π
√

1− ρ2

∫ ∞
0

r exp

{
−r

2(1− ρ sin 2θ)

2(1− ρ2)

}
dr.

Making the change of variables

u =
r2(1− ρ sin 2θ)

2(1− ρ2)
so that

(1− ρ2) du

(1− ρ sin 2θ)
= r dr

implies that

fΘ(θ) =
1

2π
√

1− ρ2
· (1− ρ2)

(1− ρ sin 2θ)

∫ ∞
0

e−u du =

√
1− ρ2

2π(1− ρ sin 2θ)

provided 0 ≤ θ < 2π.
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Problem #4. If the random vector (X,Y )′ has a multivariate normal distribution, then it follows
from Definition I that both X + Y and X − Y are normal random variables. If var(X) = var(Y ),
then

cov(X + Y,X − Y ) = cov(X,X)− cov(X,Y ) + cov(Y,X) + cov(Y, Y ) = var(X)− var(Y ) = 0.

Theorem 5.7.1 therefore implies that X+Y and X−Y are independent since cov(X+Y,X−Y ) = 0.

Problem #11. Note that by Theorem 5.7.1, in order to show X1, X2, and X3 are independent,
it is enough to show that cov(X1, X2) = cov(X1, X3) = cov(X2, X3) = 0. Thus, if X1 and X2 +X3

are independent, then cov(X1, X2 +X3) = cov(X1, X2) + cov(X1, X3) = 0 and so

cov(X1, X2) = − cov(X1, X3). (1)

If X2 and X1 +X3 are independent, then cov(X2, X1 +X3) = cov(X2, X1) + cov(X2, X3) = 0 and
so

cov(X2, X1) = − cov(X2, X3). (2)

Finally, if X3 and X1+X2 are independent, then cov(X3, X1+X2) = cov(X3, X1)+cov(X3, X2) = 0
and so

cov(X3, X1) = − cov(X3, X2). (3)

Since (1), (2), and (3) must be simultaneously satisfied, the only possibility is that cov(X1, X2) =
cov(X1, X3) = cov(X2, X3) = 0. Hence, X1, X2, and X3 are independent as required.

Problem #12. Using Theorem 5.3.1, the distribution of Y = (Y1, Y2)′ is

Y ∈ N
((

2
−1

)
,

(
10 5
5 5

))
and so we see that Y1 ∈ N(2, 10), Y2 ∈ N(−1, 5), and corr(Y1, Y2) = 1√

2
. Thus, by the results in

Section 5.6, the distribution of Y1|Y2 = y is normal with mean 2 + 1√
2
·
√

10√
5

(y − (−1)) = y + 3 and

variance 10

(
1−

(
1√
2

)2
)

= 5. That is,

Y1|Y2 = y ∈ N(y + 3, 5).

Problem #13. Let X = (X1, X2, X3)′ where X1, X2, X3 are i.i.d. N(1, 1) so that X ∈ N(µµµ,ΛΛΛ)
where

µµµ =

1
1
1

 and ΛΛΛ =

1 0 0
0 1 0
0 0 1

 .

Let Y = (U, V )′ where U = 2X1 −X2 +X3 and V = X1 + 2X2 + 3X3. If

B =

(
2 −1 1
1 2 3

)
then Y = BX. By Theorem 5.3.1, Y is MVN with mean

Bµµµ =

(
2 −1 1
1 2 3

)1
1
1

 =

(
2
6

)
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and covariance matrix

BΛΛΛB′ =

(
2 −1 1
1 2 3

)1 0 0
0 1 0
0 0 1

 2 1
−1 2
1 3

 =

(
6 3
3 14

)
.

We can immediately conclude that U ∈ N(2, 6), V ∈ N(6, 14), and cov(U, V ) = 3 so that
corr(U, V ) = 3√

6
√

14
= 3

2
√

21
. It follows from Section 5.6 that the distribution of V |U = u is

N

(
6 +

3

2
√

21

√
14√
6

(u− 2), 14

(
1− 9

4 · 21

))
.

Choosing u = 3 therefore implies that

V |U = 3 ∈ N (6.5, 12.5) .

Problem #15. Using Theorem 5.3.1, the distribution of X = (X1, X2, X3)′ is

X ∈ N

0
0
0

 ,

 2 4 −5
4 9 −10
−5 −10 13


and so we see that X1 ∈ N(0, 2), X2 ∈ N(0, 9), and X3 ∈ N(0, 13). Since cov(X1, X3) = −5,
we conclude that X1 + X3 ∈ N(0, 5). Finally, we compute cov(X2, X1 + X3) = cov(X2, X1) +
cov(X2, X3) = 4− 10 = −6 and so corr(X2, X1 +X3) = − 2√

5
. Thus, by the results in Section 5.6,

the distribution of X2|X1 + X3 = x is normal with mean 0 − 2√
5
· 3√

5
(x − 0) = −6x

5 and variance

9

(
1−

(
− 2√

5

)2
)

= 9
5 . That is,

X2|X1 +X3 = x ∈ N
(
−6x

5 ,
9
5

)
.

Problem #16. Using Theorem 5.3.1, the distribution of Y = (Y1, Y2, Y3)′ is

Y ∈ N

0
0
0

 ,

2 1 1
1 2 1
1 1 2

 .

By definition,

fY1|Y2=0,Y3=0(y) =
fY1,Y2,Y3(y, 0, 0)

fY2,Y3(0, 0)
.

From Definition III, we know

fY1,Y2,Y3(y, 0, 0) =

(
1

2π

)3/2 1√
4
e−

1
2

3
4
y2

since 2 1 1
1 2 1
1 1 2

−1

=
1

4

 3 −1 −1
−1 3 −1
−1 −1 3

 .
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The joint distribution of (Y2, Y3)′ is

(Y2, Y3)′ ∈ N
((

0
0

)
,

(
2 1
1 2

))
and so

fY2,Y3(0, 0) =
1

2π
√

3
.

Thus, we conclude

fY1|Y2=0,Y3=0(y) =

(
1

2π

)3/2 1√
4
e−

1
2

3
4
y2

1
2π
√

3

=
1√
2π

√
3

2
exp

{
−1

2

(
y

2/
√

3

)2
}

which we recognize as the density function of a normal random variable with mean 0 and variance
4/3. That is,

Y1|Y2 = Y3 = 0 ∈ N
(
0, 4

3

)
.

Problem #25. Using Theorem 5.3.1, the distribution of Y = (Y1, Y2)′ is

Y ∈ N
((

3
2

)
,

(
9 6
6 6

))
and so we see that Y1 ∈ N(3, 9), Y2 ∈ N(2, 6), and corr(Y1, Y2) =

√
2√
3
. Thus, by the results in

Section 5.6, the distribution of Y1|Y2 = 0 is normal with mean 3 +
√

2√
3
· 3√

6
(0− 2) = 1 and variance

9

(
1−

(√
2√
3

)2
)

= 3. That is,

Y1|Y2 = 0 ∈ N (1, 3) .

Problem #39. In order to determine the values of a and b for which E(U − a − bV )2 is a
minimum, we must minimize the function g(a, b) = E(U − a − bV )2. If U = X1 + X2 + X3 and
V = X1 + 2X2 + 3X3, then

U − a− bV = X1 +X2 +X3 − a− b(X1 + 2X2 + 3X3) = (1− b)X1 + (1− 2b)X2 + (1− 3b)X3 − a.

Notice that E(U − a− bV )2 = var(U − a− bV ) + [E(U − a− bV )]2. We now compute

var(U − a− bV ) = var((1− b)X1 + (1− 2b)X2 + (1− 3b)X3 − a)

= (1− b)2 var(X1) + (1− 2b)2 var(X2) + (1− 3b)2 var(X3)

= (1− b)2 + (1− 2b)2 + (1− 3b)2

using the fact that X1, X2, X3 are i.i.d. N(1, 1). Furthermore,

E(U − a− bV ) = E((1− b)X1 + (1− 2b)X2 + (1− 3b)X3 − a) = (1− b) + (1− 2b) + (1− 3b)− a
= 3− 6b− a

which implies that

g(a, b) = (1− b)2 + (1− 2b)2 + (1− 3b)2 + [3− 6b− a]2 = 12− 48b+ 50b2 − 6a+ 12ab+ a2.
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To minimize g, we begin by finding the critical points. That is,

∂

∂a
g(a, b) = −6 + 12b+ 2a = 0

implies a+ 6b = 3, and
∂

∂b
g(a, b) = −48 + 100b+ 12a = 0

implies 25b+ 3a = 12. Solving the second equation for b yields

25b = 12− 3a = 12− 3(3− 6b) and so b =
3

7
.

Substituting in gives

a = 3− 6b = 3− 18

7
=

3

7
.

Since
∂2

∂a2
g(a, b) = 2 > 0

and
∂2

∂a2
g(a, b) · ∂

2

∂b2
g(a, b)−

(
∂2

∂a∂b
g(a, b)

)2

= 2 · 100− 122 = 56 > 0

we conclude by the second derivative test that a = 3/7, b = 3/7 is indeed the minimum.
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