Stat 351 Fall 2015
Chapter 5 Solutions
Problem \#2. Let $\mathbf{X}=(X, Y)^{\prime}$ with

$$
\mathbf{X} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right),
$$

and consider the change of variables to polar coordinates $(R, \Theta)^{\prime}$. The inverse of this transformation is given by

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

for $0 \leq \theta<2 \pi, r>0$ so that the Jacobian is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

Since the density of $(X, Y)^{\prime}$ is

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}-2 \rho x y+y^{2}\right)\right\}, \quad-\infty<x, y<\infty
$$

it now follows from Theorem 1.2.1 that the density of $(R, \Theta)^{\prime}$ is

$$
\begin{aligned}
f_{R, \Theta}(r, \theta) & =f_{X, Y}(r \cos \theta, r \sin \theta) \cdot|J| \\
& =r f_{X, Y}(r \cos \theta, r \sin \theta) \\
& =\frac{r}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(r^{2} \cos ^{2} \theta-2 \rho r^{2} \sin \theta \cos \theta+r^{2} \sin ^{2} \theta\right)\right\} \\
& =\frac{r}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{r^{2}(1-\rho \sin 2 \theta)}{2\left(1-\rho^{2}\right)}\right\}
\end{aligned}
$$

for $0 \leq \theta<2 \pi, r>0$. The marginal density for Θ is therefore given by

$$
\begin{aligned}
f_{\Theta}(\theta) & =\int_{0}^{\infty} \frac{r}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{r^{2}(1-\rho \sin 2 \theta)}{2\left(1-\rho^{2}\right)}\right\} \mathrm{d} r \\
& =\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{0}^{\infty} r \exp \left\{-\frac{r^{2}(1-\rho \sin 2 \theta)}{2\left(1-\rho^{2}\right)}\right\} \mathrm{d} r .
\end{aligned}
$$

Making the change of variables

$$
u=\frac{r^{2}(1-\rho \sin 2 \theta)}{2\left(1-\rho^{2}\right)} \text { so that } \frac{\left(1-\rho^{2}\right) \mathrm{d} u}{(1-\rho \sin 2 \theta)}=r \mathrm{~d} r
$$

implies that

$$
f_{\Theta}(\theta)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \cdot \frac{\left(1-\rho^{2}\right)}{(1-\rho \sin 2 \theta)} \int_{0}^{\infty} e^{-u} \mathrm{~d} u=\frac{\sqrt{1-\rho^{2}}}{2 \pi(1-\rho \sin 2 \theta)}
$$

provided $0 \leq \theta<2 \pi$.

Problem \#4. If the random vector $(X, Y)^{\prime}$ has a multivariate normal distribution, then it follows from Definition I that both $X+Y$ and $X-Y$ are normal random variables. If $\operatorname{var}(X)=\operatorname{var}(Y)$, then

$$
\operatorname{cov}(X+Y, X-Y)=\operatorname{cov}(X, X)-\operatorname{cov}(X, Y)+\operatorname{cov}(Y, X)+\operatorname{cov}(Y, Y)=\operatorname{var}(X)-\operatorname{var}(Y)=0
$$

Theorem 5.7.1 therefore implies that $X+Y$ and $X-Y$ are independent since $\operatorname{cov}(X+Y, X-Y)=0$.
Problem \#11. Note that by Theorem 5.7.1, in order to show X_{1}, X_{2}, and X_{3} are independent, it is enough to show that $\operatorname{cov}\left(X_{1}, X_{2}\right)=\operatorname{cov}\left(X_{1}, X_{3}\right)=\operatorname{cov}\left(X_{2}, X_{3}\right)=0$. Thus, if X_{1} and $X_{2}+X_{3}$ are independent, then $\operatorname{cov}\left(X_{1}, X_{2}+X_{3}\right)=\operatorname{cov}\left(X_{1}, X_{2}\right)+\operatorname{cov}\left(X_{1}, X_{3}\right)=0$ and so

$$
\begin{equation*}
\operatorname{cov}\left(X_{1}, X_{2}\right)=-\operatorname{cov}\left(X_{1}, X_{3}\right) . \tag{1}
\end{equation*}
$$

If X_{2} and $X_{1}+X_{3}$ are independent, then $\operatorname{cov}\left(X_{2}, X_{1}+X_{3}\right)=\operatorname{cov}\left(X_{2}, X_{1}\right)+\operatorname{cov}\left(X_{2}, X_{3}\right)=0$ and so

$$
\begin{equation*}
\operatorname{cov}\left(X_{2}, X_{1}\right)=-\operatorname{cov}\left(X_{2}, X_{3}\right) . \tag{2}
\end{equation*}
$$

Finally, if X_{3} and $X_{1}+X_{2}$ are independent, then $\operatorname{cov}\left(X_{3}, X_{1}+X_{2}\right)=\operatorname{cov}\left(X_{3}, X_{1}\right)+\operatorname{cov}\left(X_{3}, X_{2}\right)=0$ and so

$$
\begin{equation*}
\operatorname{cov}\left(X_{3}, X_{1}\right)=-\operatorname{cov}\left(X_{3}, X_{2}\right) \tag{3}
\end{equation*}
$$

Since (1), (2), and (3) must be simultaneously satisfied, the only possibility is that $\operatorname{cov}\left(X_{1}, X_{2}\right)=$ $\operatorname{cov}\left(X_{1}, X_{3}\right)=\operatorname{cov}\left(X_{2}, X_{3}\right)=0$. Hence, X_{1}, X_{2}, and X_{3} are independent as required.

Problem \#12. Using Theorem 5.3.1, the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ is

$$
\mathbf{Y} \in N\left(\binom{2}{-1},\left(\begin{array}{cc}
10 & 5 \\
5 & 5
\end{array}\right)\right)
$$

and so we see that $Y_{1} \in N(2,10), Y_{2} \in N(-1,5)$, and $\operatorname{corr}\left(Y_{1}, Y_{2}\right)=\frac{1}{\sqrt{2}}$. Thus, by the results in Section 5.6, the distribution of $Y_{1} \mid Y_{2}=y$ is normal with mean $2+\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{10}}{\sqrt{5}}(y-(-1))=y+3$ and variance $10\left(1-\left(\frac{1}{\sqrt{2}}\right)^{2}\right)=5$. That is,

$$
Y_{1} \mid Y_{2}=y \in N(y+3,5) .
$$

Problem \#13. Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ where X_{1}, X_{2}, X_{3} are i.i.d. $N(1,1)$ so that $\mathbf{X} \in N(\boldsymbol{\mu}, \boldsymbol{\Lambda})$ where

$$
\boldsymbol{\mu}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Lambda}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let $\mathbf{Y}=(U, V)^{\prime}$ where $U=2 X_{1}-X_{2}+X_{3}$ and $V=X_{1}+2 X_{2}+3 X_{3}$. If

$$
B=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right)
$$

then $\mathbf{Y}=B \mathbf{X}$. By Theorem 5.3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\binom{2}{6}
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-1 & 2 \\
1 & 3
\end{array}\right)=\left(\begin{array}{cc}
6 & 3 \\
3 & 14
\end{array}\right) .
$$

We can immediately conclude that $U \in N(2,6), V \in N(6,14)$, and $\operatorname{cov}(U, V)=3$ so that $\operatorname{corr}(U, V)=\frac{3}{\sqrt{6} \sqrt{14}}=\frac{3}{2 \sqrt{21}}$. It follows from Section 5.6 that the distribution of $V \mid U=u$ is

$$
N\left(6+\frac{3}{2 \sqrt{21}} \frac{\sqrt{14}}{\sqrt{6}}(u-2), 14\left(1-\frac{9}{4 \cdot 21}\right)\right)
$$

Choosing $u=3$ therefore implies that

$$
V \mid U=3 \in N(6.5,12.5)
$$

Problem \#15. Using Theorem 5.3.1, the distribution of $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ is

$$
\mathbf{X} \in N\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{ccc}
2 & 4 & -5 \\
4 & 9 & -10 \\
-5 & -10 & 13
\end{array}\right)\right)
$$

and so we see that $X_{1} \in N(0,2), X_{2} \in N(0,9)$, and $X_{3} \in N(0,13)$. Since $\operatorname{cov}\left(X_{1}, X_{3}\right)=-5$, we conclude that $X_{1}+X_{3} \in N(0,5)$. Finally, we compute $\operatorname{cov}\left(X_{2}, X_{1}+X_{3}\right)=\operatorname{cov}\left(X_{2}, X_{1}\right)+$ $\operatorname{cov}\left(X_{2}, X_{3}\right)=4-10=-6$ and so $\operatorname{corr}\left(X_{2}, X_{1}+X_{3}\right)=-\frac{2}{\sqrt{5}}$. Thus, by the results in Section 5.6, the distribution of $X_{2} \mid X_{1}+X_{3}=x$ is normal with mean $0-\frac{2}{\sqrt{5}} \cdot \frac{3}{\sqrt{5}}(x-0)=-\frac{6 x}{5}$ and variance $9\left(1-\left(-\frac{2}{\sqrt{5}}\right)^{2}\right)=\frac{9}{5}$. That is,

$$
X_{2} \left\lvert\, X_{1}+X_{3}=x \in N\left(-\frac{6 x}{5}, \frac{9}{5}\right) .\right.
$$

Problem \#16. Using Theorem 5.3.1, the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}$ is

$$
\mathbf{Y} \in N\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)\right) .
$$

By definition,

$$
f_{Y_{1} \mid Y_{2}=0, Y_{3}=0}(y)=\frac{f_{Y_{1}, Y_{2}, Y_{3}}(y, 0,0)}{f_{Y_{2}, Y_{3}}(0,0)} .
$$

From Definition III, we know

$$
f_{Y_{1}, Y_{2}, Y_{3}}(y, 0,0)=\left(\frac{1}{2 \pi}\right)^{3 / 2} \frac{1}{\sqrt{4}} e^{-\frac{1}{2} \frac{3}{4} y^{2}}
$$

since

$$
\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)^{-1}=\frac{1}{4}\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

The joint distribution of $\left(Y_{2}, Y_{3}\right)^{\prime}$ is

$$
\left(Y_{2}, Y_{3}\right)^{\prime} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\right)
$$

and so

$$
f_{Y_{2}, Y_{3}}(0,0)=\frac{1}{2 \pi \sqrt{3}}
$$

Thus, we conclude

$$
f_{Y_{1} \mid Y_{2}=0, Y_{3}=0}(y)=\frac{\left(\frac{1}{2 \pi}\right)^{3 / 2} \frac{1}{\sqrt{4}} e^{-\frac{1}{2} \frac{3}{4} y^{2}}}{\frac{1}{2 \pi \sqrt{3}}}=\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{3}}{2} \exp \left\{-\frac{1}{2}\left(\frac{y}{2 / \sqrt{3}}\right)^{2}\right\}
$$

which we recognize as the density function of a normal random variable with mean 0 and variance $4 / 3$. That is,

$$
Y_{1} \left\lvert\, Y_{2}=Y_{3}=0 \in N\left(0, \frac{4}{3}\right)\right.
$$

Problem \#25. Using Theorem 5.3.1, the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ is

$$
\mathbf{Y} \in N\left(\binom{3}{2},\left(\begin{array}{ll}
9 & 6 \\
6 & 6
\end{array}\right)\right)
$$

and so we see that $Y_{1} \in N(3,9), Y_{2} \in N(2,6)$, and $\operatorname{corr}\left(Y_{1}, Y_{2}\right)=\frac{\sqrt{2}}{\sqrt{3}}$. Thus, by the results in Section 5.6, the distribution of $Y_{1} \mid Y_{2}=0$ is normal with mean $3+\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{3}{\sqrt{6}}(0-2)=1$ and variance $9\left(1-\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^{2}\right)=3$. That is,

$$
Y_{1} \mid Y_{2}=0 \in N(1,3)
$$

Problem \#39. In order to determine the values of a and b for which $\mathbb{E}(U-a-b V)^{2}$ is a minimum, we must minimize the function $g(a, b)=\mathbb{E}(U-a-b V)^{2}$. If $U=X_{1}+X_{2}+X_{3}$ and $V=X_{1}+2 X_{2}+3 X_{3}$, then
$U-a-b V=X_{1}+X_{2}+X_{3}-a-b\left(X_{1}+2 X_{2}+3 X_{3}\right)=(1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a$.
Notice that $\mathbb{E}(U-a-b V)^{2}=\operatorname{var}(U-a-b V)+[\mathbb{E}(U-a-b V)]^{2}$. We now compute

$$
\begin{aligned}
\operatorname{var}(U-a-b V) & =\operatorname{var}\left((1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a\right) \\
& =(1-b)^{2} \operatorname{var}\left(X_{1}\right)+(1-2 b)^{2} \operatorname{var}\left(X_{2}\right)+(1-3 b)^{2} \operatorname{var}\left(X_{3}\right) \\
& =(1-b)^{2}+(1-2 b)^{2}+(1-3 b)^{2}
\end{aligned}
$$

using the fact that X_{1}, X_{2}, X_{3} are i.i.d. $N(1,1)$. Furthermore,

$$
\begin{aligned}
\mathbb{E}(U-a-b V)=\mathbb{E}\left((1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a\right) & =(1-b)+(1-2 b)+(1-3 b)-a \\
& =3-6 b-a
\end{aligned}
$$

which implies that

$$
g(a, b)=(1-b)^{2}+(1-2 b)^{2}+(1-3 b)^{2}+[3-6 b-a]^{2}=12-48 b+50 b^{2}-6 a+12 a b+a^{2}
$$

To minimize g, we begin by finding the critical points. That is,

$$
\frac{\partial}{\partial a} g(a, b)=-6+12 b+2 a=0
$$

implies $a+6 b=3$, and

$$
\frac{\partial}{\partial b} g(a, b)=-48+100 b+12 a=0
$$

implies $25 b+3 a=12$. Solving the second equation for b yields

$$
25 b=12-3 a=12-3(3-6 b) \quad \text { and so } \quad b=\frac{3}{7} .
$$

Substituting in gives

$$
a=3-6 b=3-\frac{18}{7}=\frac{3}{7} .
$$

Since

$$
\frac{\partial^{2}}{\partial a^{2}} g(a, b)=2>0
$$

and

$$
\frac{\partial^{2}}{\partial a^{2}} g(a, b) \cdot \frac{\partial^{2}}{\partial b^{2}} g(a, b)-\left(\frac{\partial^{2}}{\partial a \partial b} g(a, b)\right)^{2}=2 \cdot 100-12^{2}=56>0
$$

we conclude by the second derivative test that $a=3 / 7, b=3 / 7$ is indeed the minimum.

