Stat 351 Fall 2015
Chapter 2 Solutions
Problem \#2. Suppose that $X+Y=2$. By definition of conditional density,

$$
f_{X \mid X+Y=2}(x)=\frac{f_{X, X+Y}(x, 2)}{f_{X+Y}(2)} .
$$

We now find the joint density $f_{X, X+Y}(x, 2)$. Let $U=X$ and $V=X+Y$ so that $X=U$ and $Y=V-U$. The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right|=1 .
$$

Since X and Y are independent $\Gamma(2, a)$, the joint density of (X, Y) is

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)= \begin{cases}\frac{x y}{a^{4}} e^{-(x+y) / a}, & \text { for } x>0, y>0, \\ 0, & \text { otherwise },\end{cases}
$$

The joint density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u, v-u) \cdot|J|=\frac{u(v-u)}{a^{4}} e^{-v / a}
$$

provided that $u>0$ and $v>u$. The marginal density for V is therefore

$$
f_{V}(v)=\int_{0}^{v} \frac{u(v-u)}{a^{4}} e^{-v / a} d u=a^{-4} e^{-v / a} \int_{0}^{v} u(v-u) d u=\frac{v^{3}}{6 a^{4}} e^{-v / a}, \quad v>0 .
$$

Since $V=X+Y$, we can rewrite these densities as $f_{X, X+Y}(x, 2)=\frac{x(2-x)}{a^{4}} e^{-2 / a}, 0<x<2$, and $f_{X+Y}(2)=\frac{2^{3}}{6 a^{4}} e^{-2 / a}$. Finally, we conclude

$$
f_{X \mid X+Y=2}(x)=\frac{f_{X, X+Y}(x, 2)}{f_{X+Y}(2)}=\frac{\frac{x(2-x)}{a^{4}} e^{-2 / a}}{\frac{2^{3}}{6 a^{4}} e^{-2 / a}}=\frac{3 x(2-x)}{4}
$$

provided that $0<x<2$.
Problem \#8. (a) The density function for Y is given by

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}} d x
$$

provided that $0<y<1$. Let $u=-\frac{x}{y}$ so that $d u=-\frac{1}{y} d x$, from which it follows that

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}} d x=\frac{1}{2} \int_{0}^{\infty} u^{2} e^{-u} d u=\frac{1}{2} \Gamma(3)=\frac{2!}{2}=1 .
$$

That is, $Y \in U(0,1)$.
(b) The conditional density of X given $Y=y$ is therefore

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{\frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}}}{1}=\frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}}
$$

provided that $x>0$. That is, $X \mid Y=y \in \Gamma(3, y)$.
(c) Since $Y \in U(0,1)$, we know that $E(Y)=\frac{1}{2}$ and $\operatorname{Var}(Y)=\frac{1}{12}$. We also use the fact from page 260 that the mean of a $\Gamma(p, a)$ random variable is $p a$ and the variance is $p a^{2}$. Thus, we find that the mean of X is

$$
E(X)=E(E(X \mid Y))=E(3 Y)=3 E(Y)=\frac{3}{2}
$$

and the variance of X is

$$
\begin{aligned}
\operatorname{Var}(X)=\operatorname{Var}(E(X \mid Y))+E(\operatorname{Var}(X \mid Y))=\operatorname{Var}(3 Y)+E\left(3 Y^{2}\right) & =9 \operatorname{Var}(Y)+3 E\left(Y^{2}\right) \\
& =9 \operatorname{Var}(Y)+3\left[\operatorname{Var}(Y)+(E(Y))^{2}\right] \\
& =\frac{9}{12}+3\left(\frac{1}{12}+\frac{1}{4}\right) \\
& =\frac{7}{4}
\end{aligned}
$$

Problem \#9 (a) Since

$$
\int_{0}^{1} \int_{0}^{1-x} c x d y d x=c \int_{0}^{1} x(1-x) d x=c\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{c}{6}
$$

we conclude that $c=6$.
(b) The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{0}^{1-y} 6 x d x=3(1-y)^{2}, \quad 0 \leq y \leq 1
$$

and the marginal for X is

$$
f_{X}(x)=\int_{0}^{1-x} 6 x d y=6 x(1-x), \quad 0 \leq x \leq 1
$$

We conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{6 x}{3(1-y)^{2}}=\frac{2 x}{(1-y)^{2}}, \quad 0 \leq x \leq 1-y,
$$

and

$$
f_{Y \mid X=x}(y)=\frac{6 x}{6 x(1-x)}=\frac{1}{1-x}, \quad 0 \leq y \leq 1-x
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{0}^{1-y} x \cdot \frac{2 x}{(1-y)^{2}} d x=\frac{2}{3}(1-y)
$$

and

$$
E(Y \mid X=x)=\int_{0}^{1-x} y \cdot \frac{1}{1-x} d y=\frac{1}{2}(1-x)
$$

Problem \#10. Since

$$
\int_{0}^{1} \int_{x}^{1} c x^{2} d y d x=c \int_{0}^{1} x^{2}(1-x) d x=c\left[\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{1}=\frac{c}{12}
$$

we conclude that $c=12$. The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{0}^{y} 12 x^{2} d x=4 y^{3}, \quad 0<y<1,
$$

and the marginal for X is

$$
f_{X}(x)=\int_{x}^{1} 12 x^{2} d y=12 x^{2}(1-x), \quad 0<x<1
$$

Hence we compute

$$
E(Y)=\int_{0}^{1} y \cdot 4 y^{3} d y=\frac{4}{5}
$$

and

$$
E(X)=\int_{0}^{1} x \cdot 12 x^{2}(1-x) d x=3-\frac{12}{5}=\frac{3}{5} .
$$

The conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{12 x^{2}}{4 y^{3}}=\frac{3 x^{2}}{y^{3}}, \quad 0<x<y,
$$

and

$$
f_{Y \mid X=x}(y)=\frac{12 x^{2}}{12 x^{2}(1-x)}=\frac{1}{1-x}, \quad x<y<1 .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{0}^{y} x \cdot \frac{3 x^{2}}{y^{3}} d x=\frac{3 y}{4}
$$

and

$$
E(Y \mid X=x)=\int_{x}^{1} y \cdot \frac{1}{1-x} d y=\frac{1-x^{2}}{2(1-x)}=\frac{1+x}{2} .
$$

Problem \#11. Since

$$
\int_{0}^{1} \int_{0}^{x} c x^{2} y d y d x=\frac{c}{2} \int_{0}^{1} x^{4} d x=\frac{c}{2}\left[\frac{1}{5} x^{5}\right]_{0}^{1}=\frac{c}{10}
$$

we conclude that $c=10$. The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{y}^{1} 10 x^{2} y d x=\frac{10}{3} y\left(1-y^{3}\right), \quad 0<y<1,
$$

and the marginal for X is

$$
f_{X}(x)=\int_{0}^{x} 10 x^{2} y d y=5 x^{4}, \quad 0<x<1 .
$$

Hence we compute

$$
E(Y)=\int_{0}^{1} y \cdot \frac{10}{3} y\left(1-y^{3}\right) d y=\frac{10}{9}-\frac{10}{18}=\frac{5}{9}
$$

and

$$
E(X)=\int_{0}^{1} x \cdot 5 x^{4} d x=\frac{5}{6} .
$$

The conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{10 x^{2} y}{\frac{10}{3} y\left(1-y^{3}\right)}=\frac{3 x^{2}}{1-y^{3}}, \quad y<x<1,
$$

and

$$
f_{Y \mid X=x}(y)=\frac{10 x^{2} y}{5 x^{4}}=\frac{2 y}{x^{2}}, \quad 0<y<x .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{y}^{1} x \cdot \frac{3 x^{2}}{1-y^{3}} d x=\frac{3\left(1-y^{4}\right)}{4\left(1-y^{3}\right)}
$$

and

$$
E(Y \mid X=x)=\int_{0}^{x} y \cdot \frac{2 y}{x^{2}} d y=\frac{2 x}{3}
$$

Problem \#18. Since

$$
\int_{0}^{1} \int_{x}^{1} c(x+y) d y d x=c \int_{0}^{1}\left[x(1-x)+\frac{1}{2}\left(1-x^{2}\right)\right] d x=c\left[\frac{1}{2} x+\frac{1}{2} x^{2}-\frac{1}{2} x^{3}\right]_{0}^{1}=\frac{c}{2}
$$

we conclude that $c=2$. The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{0}^{y} 2(x+y) d x=y^{2}+2 y^{2}=3 y^{2}, \quad 0<y<1
$$

and the marginal for X is

$$
f_{X}(x)=\int_{x}^{1} 2(x+y) d y=2 x(1-x)+\left(1-x^{2}\right)=1+2 x-3 x^{2}, \quad 0<x<1 .
$$

Hence we compute

$$
E(Y)=\int_{0}^{1} y \cdot 3 y^{2} d y=\frac{3}{4}
$$

and

$$
E(X)=\int_{0}^{1} x \cdot\left(1+2 x-3 x^{2}\right) d x=\frac{1}{2}+\frac{2}{3}-\frac{3}{4}=\frac{5}{12} .
$$

The conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{2(x+y)}{3 y^{2}}, \quad 0<x<y
$$

and

$$
f_{Y \mid X=x}(y)=\frac{2(x+y)}{1+2 x-3 x^{2}}, \quad x<y<1 .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{0}^{y} x \cdot \frac{2(x+y)}{3 y^{2}} d x=\frac{2}{3 y^{2}} \cdot\left(\frac{y^{3}}{3}+\frac{y^{3}}{2}\right)=\frac{5 y}{9}
$$

and

$$
\begin{aligned}
E(Y \mid X=x)=\int_{x}^{1} y \cdot \frac{2(x+y)}{1+2 x-3 x^{2}} d y & =\frac{2}{1+2 x-3 x^{2}} \cdot\left(\frac{x\left(1-x^{2}\right)}{2}+\frac{\left(1-x^{3}\right)}{3}\right) \\
& =\frac{2+3 x-5 x^{3}}{3\left(1+2 x-3 x^{2}\right)} \\
& =\frac{\left(2+5 x+5 x^{2}\right)(1-x)}{3(3 x+1)(1-x)} \\
& =\frac{2+5 x+5 x^{2}}{3(3 x+1)}
\end{aligned}
$$

Problem \#19. Since

$$
\int_{0}^{1} \int_{x^{2}}^{x} c d y d x=c \int_{0}^{1}\left(x-x^{2}\right) d x=c\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{c}{6}
$$

we conclude that $c=6$. The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{y}^{\sqrt{y}} 6 d x=6(\sqrt{y}-y), \quad 0 \leq y \leq 1,
$$

and the marginal for X is

$$
f_{X}(x)=\int_{x^{2}}^{x} 6 d y=6\left(x-x^{2}\right)=6 x(1-x), \quad 0 \leq x \leq 1
$$

The conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{6}{6(\sqrt{y}-y)}=\frac{1}{\sqrt{y}-y}, \quad y \leq x \leq \sqrt{y},
$$

and

$$
f_{Y \mid X=x}(y)=\frac{6}{6 x(1-x)}=\frac{1}{x(1-x)}, \quad x^{2} \leq y \leq x .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{y}^{\sqrt{y}} x \cdot \frac{1}{\sqrt{y}-y} d x=\frac{y-y^{2}}{2(\sqrt{y}-y)}=\frac{y+\sqrt{y}}{2}
$$

and

$$
E(Y \mid X=x)=\int_{x^{2}}^{x} y \cdot \frac{1}{x(1-x)} d y=\frac{x^{2}-x^{4}}{2 x(1-x)}=\frac{x(1+x)}{2} .
$$

Problem \#22. Since

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} c x^{3} y d y d x=\frac{c}{2} \int_{0}^{1} x^{3}\left(1-x^{2}\right) d x=\frac{c}{2}\left[\frac{1}{4} x^{4}-\frac{1}{6} x^{6}\right]_{0}^{1}=\frac{c}{24}
$$

we conclude that $c=24$. The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{0}^{\sqrt{1-y^{2}}} 24 x^{3} y d x=6 y\left(1-y^{2}\right)^{2}, \quad 0<y \leq 1
$$

and the marginal for X is

$$
f_{X}(x)=\int_{0}^{\sqrt{1-x^{2}}} 24 x^{3} y d y=12 x^{3}\left(1-x^{2}\right), \quad 0<x \leq 1
$$

The conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{24 x^{3} y}{6 y\left(1-y^{2}\right)^{2}}=\frac{4 x^{3}}{\left(1-y^{2}\right)^{2}}, \quad 0<x \leq \sqrt{1-y^{2}}
$$

and

$$
f_{Y \mid X=x}(y)=\frac{24 x^{3} y}{12 x^{3}\left(1-x^{2}\right)}=\frac{2 y}{1-x^{2}}, \quad 0<y \leq \sqrt{1-x^{2}} .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{0}^{\sqrt{1-y^{2}}} x \cdot \frac{4 x^{3}}{\left(1-y^{2}\right)^{2}} d x=\frac{4\left(1-y^{2}\right)^{5 / 2}}{5\left(1-y^{2}\right)^{2}}=\frac{4 \sqrt{1-y^{2}}}{5}
$$

and

$$
E(Y \mid X=x)=\int_{0}^{\sqrt{1-x^{2}}} y \cdot \frac{2 y}{1-x^{2}} d y=\frac{2\left(1-x^{2}\right)^{3 / 2}}{3\left(1-x^{2}\right)}=\frac{2 \sqrt{1-x^{2}}}{3}
$$

Problem \#23. Since

$$
\int_{0}^{1 / 2} \int_{0}^{\sqrt{1-4 x^{2}}} c x y d y d x=\frac{c}{2} \int_{0}^{1 / 2} x\left(1-4 x^{2}\right) d x=\frac{c}{2}\left[\frac{1}{2} x^{2}-x^{4}\right]_{0}^{1 / 2}=\frac{c}{32}
$$

we conclude that $c=32$. The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{0}^{\frac{1}{2} \sqrt{1-y^{2}}} 32 x y d x=16 y \cdot \frac{1}{4}\left(1-y^{2}\right)=4 y\left(1-y^{2}\right), \quad 0<y \leq 1,
$$

and the marginal for X is

$$
f_{X}(x)=\int_{0}^{\sqrt{1-4 x^{2}}} 32 x y d y=16 x\left(1-4 x^{2}\right), \quad 0<x \leq \frac{1}{2} .
$$

The conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{32 x y}{4 y\left(1-y^{2}\right)}=\frac{8 x}{1-y^{2}}, \quad 0<x \leq \frac{1}{2} \sqrt{1-y^{2}},
$$

and

$$
f_{Y \mid X=x}(y)=\frac{32 x y}{16 x\left(1-4 x^{2}\right)}=\frac{2 y}{1-4 x^{2}}, \quad 0<y \leq \sqrt{1-4 x^{2}} .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{0}^{\frac{1}{2} \sqrt{1-y^{2}}} x \cdot \frac{8 x}{1-y^{2}} d x=\frac{8 \cdot \frac{1}{8} \cdot\left(1-y^{2}\right)^{3 / 2}}{3\left(1-y^{2}\right)}=\frac{\sqrt{1-y^{2}}}{3}
$$

and

$$
E(Y \mid X=x)=\int_{0}^{\sqrt{1-4 x^{2}}} y \cdot \frac{2 y}{1-4 x^{2}} d y=\frac{\left.2\left(1-4 x^{2}\right)^{3 / 2}\right)}{3\left(1-4 x^{2}\right)}=\frac{2 \sqrt{1-4 x^{2}}}{3} .
$$

Problem \#30. If $X \left\lvert\, A=a \in W\left(\frac{1}{a}, \frac{1}{b}\right)\right.$ with $A \in \Gamma(p, \theta)$, then by the law of total probability,

$$
\begin{aligned}
f_{X}(x)=\int_{-\infty}^{\infty} f_{X \mid A=a}(x) f_{A}(a) d a & =\int_{0}^{\infty} a b x^{b-1} e^{-a x^{b}} \cdot \frac{1}{\Gamma(p)} \frac{1}{\theta^{p}} a^{p-1} e^{-a / \theta} d a \\
& =\frac{b x^{b-1}}{\theta^{p} \Gamma(p)} \int_{0}^{\infty} a^{p} e^{-a x^{b}-a / \theta} d a
\end{aligned}
$$

Let $u=a\left(x^{b}+\frac{1}{\theta}\right)$ so that $d u=\left(x^{b}+\frac{1}{\theta}\right) d a$ and the integral above becomes

$$
=\frac{b x^{b-1}}{\theta^{p} \Gamma(p)} \int_{0}^{\infty} u^{p}\left(x^{b}+\frac{1}{\theta}\right)^{-p} e^{-u}\left(x^{b}+\frac{1}{\theta}\right)^{-1} d u=\frac{b x^{b-1}\left(x^{b}+\frac{1}{\theta}\right)^{-1-p}}{\theta^{p} \Gamma(p)} \int_{0}^{\infty} u^{p} e^{-u} d u
$$

But

$$
\int_{0}^{\infty} u^{p} e^{-u} d u=\Gamma(p+1)
$$

and so we conclude that for $x>0$ (and using the fact that $\Gamma(p+1)=p \cdot \Gamma(p)$) that

$$
f_{X}(x)=\frac{b x^{b-1}\left(x^{b}+\frac{1}{\theta}\right)^{-1-p}}{\theta^{p} \Gamma(p)} \Gamma(p+1)=\frac{b p x^{b-1}\left(x^{b}+\frac{1}{\theta}\right)^{-1-p}}{\theta^{p}} .
$$

The final step is to determine the distribution of X^{b}. If $Y=X^{b}$, then

$$
P(Y \leq y)=P\left(X^{b} \leq y\right)=P\left(X \leq y^{1 / b}\right)
$$

and so

$$
f_{Y}(y)=\frac{1}{b} y^{1 / b-1} f_{X}\left(y^{1 / b}\right)=\frac{1}{b} y^{1 / b-1} \frac{b p y^{(b-1) / b}\left(y+\frac{1}{\theta}\right)^{-1-p}}{\theta^{p}}=\frac{p}{\theta^{p}} \frac{1}{\left(y+\frac{1}{\theta}\right)^{p+1}}, \quad y>0,
$$

which happens to be the density function of a translated Pareto distribution.

