Stat 351 Fall 2015
Assignment \#7
Solutions should be completed, but not submitted, by Wednesday, November 18, 2015.

1. Suppose that X_{1} and X_{2} are independent $N(0,1)$ random variables. Set $Y_{1}=X_{1}+3 X_{2}-2$ and $Y_{2}=X_{1}-2 X_{2}+1$.
(a) Determine the distributions of Y_{1} and Y_{2}.
(b) Determine the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$.
2. Let \mathbf{X} have a three-dimensional normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix Λ given by

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right) \quad \text { and } \quad \Lambda=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 4 & -2 \\
3 & -2 & 8
\end{array}\right)
$$

respectively. If $Y_{1}=X_{1}-X_{3}$ and $Y_{2}=3 X_{2}$, determine the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$.
3. Suppose that Y_{1}, Y_{2}, and Y_{3} are independent $N(0,1)$ random variables. Set

$$
\begin{aligned}
& X_{1}=Y_{1}+Y_{3}, \\
& X_{2}=2 Y_{1}-Y_{2}+2 Y_{3}, \\
& X_{3}=2 Y_{1}-3 Y_{3} .
\end{aligned}
$$

Determine the distribution of $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$.
4. Suppose that X_{1}, X_{2}, and X_{3} are independent $N(0,1)$ random variables. Set

$$
\begin{aligned}
& Y_{1}=X_{2}-X_{3}, \\
& Y_{2}=X_{1}+2 X_{3}, \\
& Y_{3}=X_{1}-2 X_{2} .
\end{aligned}
$$

Determine the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}$.
5. Suppose that

$$
\mathbf{X}=(X, Y)^{\prime} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) .
$$

Show that the correlation of X^{2} and Y^{2} is ρ^{2}.
Some Hints: (i) If $Z \in N(0,1)$, use the moment generating function to calculate $E\left(Z^{4}\right)$.
(ii) In order to calculate the higher moment involving X and Y, using conditional expectations will greatly simplify the calculation. Determine the distribution of $Y \mid X$. (Use Equation (6.2) in Chapter 5.) Then use Theorem 2.2 in Chapter 3.

