Stat 351 Fall 2015
Assignment \#5
Solutions should be completed, but not submitted, by Wednesday, November 4, 2015.

1. Chapter 4 Problem \#1, page 113. Since the random vector $(X, Y, Z)^{\prime}$ is continuous and the density $f(x, y, z)$ is symmetric in x, y, and z, we can immediately conclude that $P(X<Y<Z)=$ $1 / 6$. (Compare this to Problem 6 on Assignment \#1.) However, I would like to you write down an iterated integral to represent

$$
P(X<Y<Z)=\iiint_{\{x<y<z\}} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
$$

(There are $3!=6$ different integrals that you can choose depending on your order of $\mathrm{d} x, \mathrm{~d} y$, and dz.) Then compute this integral and verify that you do, in fact, get $1 / 6$.
2. Chapter 4 Problem, pages 113-114, \#6 through \#11. Problems involving order statistics of uniform random variables are suitable for exams!
3. Chapter 4 Problems, pages $113-116, \# 3, \# 5, \# 15, \# 16, \# 17, \# 19, \# 20, \# 21, \# 22, \# 24$, \#27
4. Chapter 4 Problem \#27, page 116. The distribution of $V=\max \left\{X_{1}, \ldots, X_{N}\right\}$ is interpreted to be a conditional distribution in the following sense. Suppose that $N=n$ is fixed. Determine the distribution of $\max \left\{X_{1}, \ldots, X_{n}\right\}$ which is really the conditional distribution $V \mid N=n$. You can now find the distribution of V using the law of total probability. (Don't forget to handle the case $N=0$ separately.) Also, you will find it easier to calculate $E(V)$ by first calculating $E(V \mid N=n)$.

