Statistics 351 Fall 2009 Midterm \#2 - Solutions

1. Since X_{1}, X_{2}, and X_{3} are independent and normally distributed, we conclude that if we set $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$, then \mathbf{X} is multivariate normal with mean vector $\boldsymbol{\mu}$ and covariance matrix Λ where

$$
\boldsymbol{\mu}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Lambda}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let

$$
B=\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & -2
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\binom{1}{0}
$$

so that $\mathbf{Y}=B \mathbf{X}+\mathbf{b}$. By Theorem 5.3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}+\mathbf{b}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+\binom{1}{0}=\binom{1}{0}
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
0 & -2
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 9
\end{array}\right)
$$

2. By Theorem 4.2.1, the joint density of the maximum and minimum, we find

$$
f_{X_{(1)}, X_{(4)}}\left(y_{1}, y_{4}\right)=12\left(y_{4}-y_{1}\right)^{2}
$$

provided that $0<y_{1}<y_{4}<1$. Therefore,

$$
P\left(X_{(1)}+X_{(4)} \leq 1\right)=\iint_{\substack{0<x+y<1, 0<x<y<1}} f_{X_{(1)}, X_{(4)}}(x, y) \mathrm{d} x \mathrm{~d} y .
$$

Drawing the region of integration $\{0<x+y<1,0<x<y<1\}$, we see that it can be described by $0<x<1 / 2$ and $x<y<1-x$. This gives

$$
\begin{aligned}
P\left(X_{(1)}\right. & \left.+X_{(4)} \leq 1\right)=\int_{0}^{1 / 2} \int_{x}^{1-x} f_{X_{(1)}, X_{(4)}}(x, y) \mathrm{d} y \mathrm{~d} x=\int_{0}^{1 / 2} \int_{x}^{1-x} 12(y-x)^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\left.\int_{0}^{1 / 2} 4(y-x)^{3}\right|_{y=x} ^{y=1-x} \mathrm{~d} x=\int_{0}^{1 / 2} 4(1-2 x)^{3} \mathrm{~d} x=-\left.\frac{1}{2}(1-2 x)^{4}\right|_{0} ^{1 / 2}=\frac{1}{2}
\end{aligned}
$$

3. Recall that if $X \in U(0,1)$, then $E(X)=1 / 2$ and $\operatorname{var}(X)=1 / 12$. Since the conditional distribution of $Y \mid X=x \in N\left(x, x^{2}\right)$, we know that $E(Y \mid X)=X$ and $\operatorname{var}(Y \mid X)=X^{2}$. Therefore, it follows from Theorem 2.2.1 that

$$
E(Y)=E(E(Y \mid X))=E(X)=\frac{1}{2}
$$

From Corollary 2.2.3.1, we find
$\operatorname{var}(Y)=E(\operatorname{var}(Y \mid X))+\operatorname{var}(E(Y \mid X))=E\left(X^{2}\right)+\operatorname{var}(X)=\frac{1}{12}+\left(\frac{1}{2}\right)^{2}+\frac{1}{12}=\frac{5}{12}$.
By definition, $\operatorname{cov}(X, Y)=E(X Y)+E(Y) E(X)$. In order to calculate $E(X Y)$, notice that Theorem 2.2.1 implies $E(X Y)=E(E(X Y \mid X))$. However, by Theorem 2.2.2 ("taking out what is known"), we see that

$$
E(E(X Y \mid X))=E(X E(Y \mid X))=E(X \cdot X)=E\left(X^{2}\right)=\frac{1}{12}+\left(\frac{1}{2}\right)^{2}
$$

Combining everything gives

$$
\operatorname{cov}(X, Y)=E(X Y)-E(Y) E(X)=\frac{1}{12}+\left(\frac{1}{2}\right)^{2}-\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{12}
$$

4. Recall that a covariance matrix must be symmetric and non-negative definite. Since the diagonal entries represent variances, they must be non-negative. Hence, we immediately see that A and D cannot be covariance matrices since A has a negative diagonal entry and D is not symmetric. If we check the upper left blocks of B, we find $\operatorname{det}\left[B_{1}\right]=4, \operatorname{det}\left[B_{2}\right]=8$, and $\operatorname{det}\left[B_{3}\right]=4$. Thus, B is positive definite (as well as symmetric and having positive diagonal entries) and so it can be a covariance matrix. If we check the upper left blocks of C, we find $\operatorname{det}\left[C_{1}\right]=1$ and $\operatorname{det}\left[C_{2}\right]=-3$ so that C cannot be a covariance matrix.
5. Since \mathbf{X} has a multivariate normal distribution, we know from Definition I that $X_{1}+X_{2}$ is normal with

$$
E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0+0=0
$$

and

$$
\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)=1+2+2(-1)=1 .
$$

Since \mathbf{Y} has a multivariate normal distribution, we know from Definition I that $Y_{1}+Y_{2}$ is normal with

$$
E\left(Y_{1}+Y_{2}\right)=E\left(Y_{1}\right)+E\left(Y_{2}\right)=1+1=2
$$

and

$$
\operatorname{var}\left(Y_{1}+Y_{2}\right)=\operatorname{var}\left(Y_{1}\right)+\operatorname{var}\left(Y_{2}\right)+2 \operatorname{cov}\left(Y_{1}, Y_{2}\right)=2+3+2(-2)=1
$$

Furthermore, since \mathbf{X} and \mathbf{Y} are independent, we conclude that $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$ are independent. That is, $Z=\left(X_{1}+X_{2}\right)-\left(Y_{1}+Y_{2}\right)$ is the sum of independent normal random variables and so it must also be normal. Finally, we calculate

$$
E(Z)=E\left(\left(X_{1}+X_{2}\right)-\left(Y_{1}+Y_{2}\right)\right)=E\left(X_{1}+X_{2}\right)-E\left(Y_{1}+Y_{2}\right)=0-2=-2
$$

and

$$
\operatorname{var}(Z)=\operatorname{var}\left(\left(X_{1}+X_{2}\right)-\left(Y_{1}+Y_{2}\right)\right)=\operatorname{var}\left(X_{1}+X_{2}\right)+\operatorname{var}\left(Y_{1}+Y_{2}\right)=1+1=2 .
$$

That is, $Z \in N(-2,2)$.

