Statistics 351 Fall 2008 Midterm \#2 - Solutions

1. (a) Clearly $\boldsymbol{\mu}=(0,0)^{\prime}$. As for $\boldsymbol{\Lambda}$, observe that

$$
-\frac{1}{2} x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}=-\frac{1}{2}\left(x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}\right)
$$

so that

$$
\Lambda^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] \quad \text { which implies that } \quad \Lambda=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

since $\operatorname{det}[\boldsymbol{\Lambda}]=\operatorname{det}\left[\boldsymbol{\Lambda}^{-1}\right]=1$.

1. (b) Let

$$
B=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

so that $\mathbf{Y}=B \mathbf{X}$. Since

$$
B \boldsymbol{\mu}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad B \boldsymbol{\Lambda} B^{\prime}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right]
$$

we conclude from Theorem V.3.1 that

$$
\mathbf{Y} \in N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right]\right) .
$$

1. (c) Since $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ is multivariate normal, we know from equation (6.1) on page 129 that $Y_{2} \mid Y_{1}=y_{1}$ is normal with

$$
E\left(Y_{2} \mid Y_{1}=y_{1}\right)=\mu_{y_{2}}+\rho \frac{\sigma_{y_{2}}}{\sigma_{y_{1}}}\left(y_{1}-\mu_{y_{1}}\right) \quad \text { and } \quad \operatorname{var}\left(Y_{2} \mid Y_{1}=y_{1}\right)=\sigma_{y_{2}}^{2}\left(1-\rho^{2}\right)
$$

Since $Y_{1} \in N(0,1), Y_{2} \in N(0,5)$ and $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=1$ so that $\rho=\operatorname{corr}\left(Y_{1}, Y_{2}\right)=\frac{1}{\sqrt{5}}$, we conclude that $Y_{2} \mid Y_{1}=0 \in N(0,4)$.
2. (a) Since

$$
\begin{aligned}
\operatorname{det}[\Lambda-\lambda I]=\left(\frac{7}{4}-\lambda\right)\left(\frac{5}{4}-\lambda\right)-\frac{3}{16} & =\frac{35}{16}-\frac{5}{4} \lambda-\frac{7}{4} \lambda+\lambda^{2}-\frac{3}{16} \\
& =\lambda^{2}-3 \lambda+2 \\
& =(\lambda-1)(\lambda-2)
\end{aligned}
$$

we conclude that the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=2$.
2. (b) Since

$$
\Lambda-\lambda_{1} I=\left[\begin{array}{cc}
\frac{3}{4} & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right] \sim\left[\begin{array}{cc}
\frac{3}{4} & -\frac{\sqrt{3}}{4} \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
3 & -\sqrt{3} \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
\sqrt{3} & -1 \\
0 & 0
\end{array}\right]
$$

we conclude that an eigenvector corresponding to λ_{1} is

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right] .
$$

Since

$$
\Lambda-\lambda_{2} I=\left[\begin{array}{cc}
-\frac{1}{4} & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & -\frac{3}{4}
\end{array}\right] \sim\left[\begin{array}{cc}
-\frac{1}{4} & -\frac{\sqrt{3}}{4} \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
1 & \sqrt{3} \\
0 & 0
\end{array}\right]
$$

we conclude that an eigenvector corresponding to λ_{2} is

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]
$$

Thus, the required orthogonal matrix C and required diagonal matrix D are

$$
C=\left[\begin{array}{cc}
\mathbf{v}_{1} & \frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{1}\right\|}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \quad \text { and } \quad D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

2. (c) Since $\operatorname{det}[\boldsymbol{\Lambda}]=35 / 16-3 / 16=32 / 16=2$ and

$$
\Lambda^{-1}=\left[\begin{array}{cc}
\frac{5}{8} & -\frac{\sqrt{3}}{8} \\
-\frac{\sqrt{3}}{8} & \frac{7}{8}
\end{array}\right]
$$

so that

$$
\mathbf{x}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{x}=\frac{5}{8} x_{1}^{2}-\frac{\sqrt{3}}{4} x_{1} x_{2}+\frac{7}{8} x_{2}^{2}
$$

we conclude that the density function of \mathbf{X} is

$$
f_{\mathbf{X}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{\operatorname{det}[\boldsymbol{\Lambda}]}} \exp \left\{-\frac{1}{2} \mathbf{x}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{x}\right\}=\frac{1}{2 \pi \sqrt{2}} \exp \left\{-\frac{1}{2}\left(\frac{5}{8} x_{1}^{2}-\frac{\sqrt{3}}{4} x_{1} x_{2}+\frac{7}{8} x_{2}^{2}\right)\right\}
$$

2. (d) If $\mathbf{Y}=C^{\prime} \mathbf{X}$, then by Theorem V.8.1 (or Theorem V.3.1) \mathbf{Y} has a multivariate normal distribution with mean vector

$$
C^{\prime} \boldsymbol{\mu}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and covariance matrix

$$
C^{\prime} \Lambda C=C^{\prime}\left(C D C^{\prime}\right) C=\left(C^{\prime} C\right) D\left(C^{\prime} C\right)=I D I=D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

2. (e) Since Y_{1} and Y_{2} are components of a multivariate normal random vector and satisfy $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=0$, we know from Theorem V.7.1 that Y_{1} and Y_{2} are independent.
3. (f) It follows from Theorem V.9.1 that $\mathbf{X}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{X}$ has a $\chi^{2}(2)$ distribution.
4. Let $\mathbf{a}=\left(a_{1}, a_{2}\right)^{\prime}$ so that

$$
X_{2}-\mathbf{a}^{\prime}\left[\begin{array}{l}
X_{1} \\
X_{3}
\end{array}\right]=X_{2}-\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{3}
\end{array}\right]=X_{2}-a_{1} X_{1}-a_{2} X_{3}
$$

If we let $\mathbf{Y}=\left(X_{2}, X_{2}-a_{1} X_{1}-a_{2} X_{3}\right)^{\prime}$ then by Theorem V.3.1, \mathbf{Y} has a multivariate normal distribution since its components are linear combinations of \mathbf{X}, a multivariate normal. Thus, by Theorem V.7.1, we know the components of \mathbf{Y} are independent iff they are uncorrelated. Since

$$
\operatorname{cov}\left(X_{2}, X_{2}-a_{1} X_{1}-a_{2} X_{3}\right)=\operatorname{var}\left(X_{2}\right)-a_{1} \operatorname{cov}\left(X_{2}, X_{1}\right)-a_{2} \operatorname{cov}\left(X_{2}, X_{3}\right)=3-a_{1}-2 a_{2}
$$

we must choose a_{1} and a_{2} such that $3-a_{1}-2 a_{2}=0$. For example, choosing $\mathbf{a}=(1,1)^{\prime}$ or $\mathbf{a}=(3,0)^{\prime}$ work (along with infinitely many other possibilities).
4. (a) The joint density of $\left(X_{(1)}, X_{(2)}\right)^{\prime}$ is

$$
f_{X_{(1)}, X_{(2)}}\left(y_{1}, y_{2}\right)=2 a^{2} \theta^{-2 a} y_{1}^{a-1} y_{2}^{a-1}
$$

provided that $0<y_{1}<y_{2}<\theta$. If we now let $U=X_{(1)} / X_{(2)}$ and $V=X_{(2)}$, then solving for $X_{(1)}$ and $X_{(2)}$ gives $X_{(1)}=U V$ and $X_{(2)}=V$ so that the Jacobian of this transformation is

$$
J=\left|\begin{array}{cc}
\frac{\partial y_{1}}{\partial u} & \frac{\partial y_{1}}{\partial v} \\
\frac{\partial y_{2}}{\partial u} & \frac{\partial y_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
0 & 1
\end{array}\right|=v .
$$

By Theorem I.2.1, the joint density of $(U, V)^{\prime}$ is therefore given by

$$
f_{U, V}(u, v)=f_{X_{(1)}, X_{(2)}}(u v, v) \cdot|J|=v \cdot 2 a^{2} \theta^{-2 a}(u v)^{a-1} v^{a-1}=2 a^{2} \theta^{-2 a} u^{a-1} v^{2 a-1}
$$

provided that $0<u<1$ and $0<v<\theta$. Hence,

$$
\begin{aligned}
f_{U}(u)=\int_{0}^{\theta} 2 a^{2} \theta^{-2 a} u^{a-1} v^{2 a-1} \mathrm{~d} v & =a \theta^{-2 a} u^{a-1} \int_{0}^{\theta} 2 a v^{2 a-1} \mathrm{~d} v \\
& =\left.a \theta^{-2 a} u^{a-1} v^{2 a}\right|_{v=0} ^{v=\theta} \\
& =a u^{a-1}
\end{aligned}
$$

for $0<u<1$.
4. (b) Since $f_{U, V}(u, v)$ can be written as a product of a function of u only and a function of v only, namely $f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)$ where $f_{U}(u)=a u^{a-1}, 0<u<1$, and $f_{V}(v)=2 a \theta^{-2 a} v^{2 a-1}, 0<v<\theta$, we conclude that the random variables U and V must be independent.
4. (c) We can write $E\left(X_{(1)}\right)$ as

$$
E\left(X_{(1)}\right)=E\left(\frac{X_{(1)}}{X_{(2)}} \cdot X_{(2)}\right)=E\left(U \cdot X_{(2)}\right)=E(U) \cdot E\left(X_{(2)}\right)=E\left(\frac{X_{(1)}}{X_{(2)}}\right) \cdot E\left(X_{(2)}\right)
$$

using the fact that U and $X_{(2)}$ are independent. Dividing both sides by $E\left(X_{(2)}\right)$ gives the result.

