
Statistics 351 Fall 2006 Midterm #2 — Solutions

1. (a) Recall that a square matrix is strictly positive definite if and only if the determinants
of all of its upper block diagonal matrices are strictly positive. Since

ΛΛΛ =

(
2 −2
−2 3

)
we see that det(ΛΛΛ1) = det(2) = 2 > 0 and det(ΛΛΛ2) = det(ΛΛΛ) = 6 − 4 = 2 > 0, and so
we conclude that ΛΛΛ is, in fact, strictly positive definite.

1. (b) Since det[ΛΛΛ] = 2, we find

ΛΛΛ−1 =

(
3/2 1
1 1

)
so that

(x− µµµ)′ΛΛΛ−1(x− µµµ) =
3

2
(x1 − 1)2 + 2(x1 − 1)(x2 − 2) + (x2 − 2)2.

Thus, the density of X is

fX(x1, x2) =
1

2π
√

2
exp

{
−1

2

(
3

2
(x1 − 1)2 + 2(x1 − 1)(x2 − 2) + (x2 − 2)2

)}
.

1. (c) If Y1 = X1 − 2X2 and Y2 = X1 + X2, then by Definition I, Y1 is normal with mean
E(Y1) = E(X1) − 2E(X2) = −3 and variance var(Y1) = var(X1) + 4 var(X2) −
4 cov(X1, X2) = 22, and Y2 is normal with mean E(Y2) = E(X1) + E(X2) = 3 and
variance var(Y1) = var(X1) + var(X2)− 2 cov(X1, X2) = 1. Since

cov(Y1, Y2) = cov(X1 − 2X2, X1 + X2) = var(X1)− cov(X1, X2)− 2 var(X2) = −2,

we conclude

Y = (Y1, Y2)
′ ∈ N

((
−3
3

)
,

(
22 −2
−2 1

))
.

2. By Definition I, we see that X1 and X1 + X2 are each normally distributed random
variables. Therefore, by Theorem V.7.1, X1 and X1 + X2 are independent if and only
if they are uncorrelated. Since,

cov(X1, X1 + X2) = cov(X1, X1) + cov(X1, X2) = var(X1) + cov(X1, X2) = 1− 1 = 0,

we conclude that X1 and X1 + X2 are, in fact, independent.

3. The joint density of (X(1), X(2), X(3), X(4))
′ is given by

fX(1),X(2),X(3),X(4)
(y1, y2, y3, y4) = 4!, 0 < y1 < y2 < y3 < y4 < 1.

The joint density of (X(2), X(3))
′ is then given by

fX(2),X(3)
(y2, y3) =

∫ 1

y3

∫ y2

0

24 dy1 dy4 = 24y2(1− y3), 0 < y2 < y3 < 1.
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Let U = X(3) −X(2) and V = X(2) so that X(2) = V and X(3) = U + V . The Jacobian
of this transformation is

J =

∣∣∣∣0 1
1 1

∣∣∣∣ = −1

so by the transformation theorem (Theorem I.2.1) the joint density of U and V is

fU,V (u, v) = 24v(1− u− v)

provided that 0 < v < 1− u and 0 < u < 1. Thus, the marginal for U is

fU(u) =

∫ 1−u

0

24v(1− u− v) dv = (12v2(1− u)− 8v3)

∣∣∣∣(1−u)

0

= 4(1− u)3, 0 < u < 1.

That is, the density for X(3) −X(2) is

fX(3)−X(2)
(u) = 4(1− u)3, 0 < u < 1.

4. Let Y = max{X1, X2}. By Theorem IV.1.2, the density function for Y is given by

fY (y) = 2F (y)f(y)

where F is the common distribution function of X1 and X2, and f is their common
density function. (Recall that X1 and X2 are iid N(0, 1).) Therefore,

E(Y ) =

∫ ∞

−∞
yfY (y) dy = 2

∫ ∞

−∞
yF (y)f(y) dy

= 2

∫ ∞

−∞
y

∫ y

−∞

1√
2π

e−
x2

2 dx
1√
2π

e−
y2

2 dy

=
1

π

∫ ∞

−∞

∫ y

−∞
ye−

y2

2 e−
x2

2 dx dy.

In order to calculate this integral, we switch the order of integration so that

E(Y ) =
1

π

∫ ∞

−∞

∫ ∞

x

ye−
y2

2 e−
x2

2 dy dx =
1

π

∫ ∞

−∞
e−

x2

2

[∫ ∞

x

ye−
y2

2 dy

]
dx

=
1

π

∫ ∞

−∞
e−

x2

2

[
−e−

y2

2

]y=∞

y=x

dx =
1

π

∫ ∞

−∞
e−

x2

2 e−
x2

2 dx

=
1

π

∫ ∞

−∞
e−x2

dx =
1

π
·
√

π =
1√
π

.

The last line follows from the fact that the density function of a N(0, 1/2) random
variable integrates to 1.

5. By Definition I, we see that X1 − ρX2 is normally distributed with mean

E(X1 − ρX2) = E(X1)− ρE(X2) = 0
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and variance

var(X1 − ρX2) = var(X1) + ρ2 var(X2)− 2ρ cov(X1, X2) = 1 + ρ2 − 2ρ2 = 1− ρ2.

That is, X1 − ρX2 = Y where Y ∈ N(0, 1 − ρ2). Hence, Y =
√

1− ρ2Z where
Z ∈ N(0, 1). In other words, there exists a Z ∈ N(0, 1) such that

X1 − ρX2 =
√

1− ρ2Z.
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