Statistics 351 (Fall 2009)
The t-Test for Independent Normal Random Variables
Our goal is to explain the t-test from first-year statistics.
Theorem. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent and identically distributed $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variables, and suppose that

$$
\bar{Y}=\frac{1}{n} \sum_{j=1}^{n} Y_{j} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}
$$

denote the sample mean and sample variance, respectively. If we define the random variable

$$
T=\frac{\bar{Y}-\mu}{S / \sqrt{n}}
$$

then $T \in t(n-1)$; that is, T has a t-distribution with $n-1$ degrees of freedom.
The main step in the proof of this theorem is the independence of \bar{Y} and S^{2} established last lecture. However, there are a number of other preliminary results that will also be needed.

Definition. For $m=1,2,3, \ldots$, we say that a random variable X has a t-distribution with m degrees of freedom if the density function of X is

$$
f_{X}(x)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{\pi m} \Gamma\left(\frac{m}{2}\right)}\left(1+\frac{x^{2}}{m}\right)^{-\frac{m+1}{2}}, \quad-\infty<x<\infty .
$$

Definition. For $m=1,2,3, \ldots$, we say that a random variable X has a chi-squared distribution with m degrees of freedom if the density function of X is

$$
f_{X}(x)=\frac{2^{-m / 2}}{\Gamma(m / 2)} x^{\frac{m}{2}-1} e^{-x / 2}, \quad x>0 .
$$

In other words, $X \in \chi^{2}(m)$ if and only if $X \in \Gamma(m / 2,2)$.
Remark. Observe that $\chi^{2}(2)=\Gamma(1,2)=\operatorname{Exp}(2)$.
Example. Show that if $Z \in \mathcal{N}(0,1)$, then $Z^{2} \in \chi^{2}(1)$.
Solution. Suppose that $X=Z^{2}$. For $x>0$, the distribution function of X is

$$
\begin{aligned}
F_{X}(x)=P\{X \leq x\} & =P\left\{Z^{2} \leq x\right\} \\
& =P\{-\sqrt{x} \leq Z \leq \sqrt{x}\} \\
& =P\{Z \leq \sqrt{x}\}-P\{Z \leq-\sqrt{x}\} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\sqrt{x}} \exp \left\{-\frac{z^{2}}{2}\right\} \mathrm{d} z-\frac{1}{\sqrt{2 \pi}} \int_{0}^{-\sqrt{x}} \exp \left\{-\frac{z^{2}}{2}\right\} \mathrm{d} z
\end{aligned}
$$

so that the density of X is

$$
f_{X}(x)=F_{X}^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x / 2} \cdot \frac{1}{2 \sqrt{x}}-\frac{1}{\sqrt{2 \pi}} e^{-x / 2} \cdot\left(-\frac{1}{2 \sqrt{x}}\right)=\frac{1}{\sqrt{2 \pi}} x^{-1 / 2} e^{-x / 2}, \quad x>0 .
$$

Since $\Gamma(1 / 2)=\sqrt{\pi}$, we recognize the density of X as the density of a $\chi^{2}(1)$ random variable. That is, $Z^{2} \in \chi^{2}(1)$ as required.

Example. If $X_{1} \in \Gamma\left(p_{1}, a\right)$ and $X_{2} \in \Gamma\left(p_{2}, a\right)$ are independent, show $X_{1}+X_{2} \in \Gamma\left(p_{1}+p_{2}, a\right)$.
Solution. We actually did this in Lecture \#6 using the transformation theorem (Theorem 1.2.1); see Problem \#39 of Chapter 1 as well. The easier way to verify this is to use moment generating functions. Recall that the moment generating function of a sum of independent random variables is the product of the individual moment generating functions. That is,

$$
m_{X_{1}+X_{2}}(t)=\mathbb{E}\left(e^{t\left(X_{1}+X_{2}\right)}\right)=\mathbb{E}\left(e^{t X_{1}}\right) \cdot \mathbb{E}\left(e^{t X_{2}}\right)=m_{X_{1}}(t) \cdot m_{X_{2}}(t)
$$

As shown on page 67 , the moment generating function of $X \in \Gamma(p, a)$ is

$$
m_{X}(t)=\frac{1}{(1-a t)^{p}} \quad \text { for } t<\frac{1}{a}
$$

Hence,

$$
m_{X_{1}+X_{2}}(t)=m_{X_{1}}(t) \cdot m_{X_{2}}(t)=\frac{1}{(1-a t)^{p_{1}}} \cdot \frac{1}{(1-a t)^{p_{2}}}=\frac{1}{(1-a t)^{p_{1}+p_{2}}}
$$

for $t<1 / a$ so that $X_{1}+X_{2} \in \Gamma\left(p_{1}+p_{2}, a\right)$ as required.
Example. In particular, combining the last two examples yields the following fact. If Z_{1}, \ldots, Z_{n} are independent and identically distributed $\mathcal{N}(0,1)$ random variables, then

$$
Z_{1}^{2}+\cdots+Z_{n}^{2} \in \chi^{2}(n)
$$

Example. Suppose that Y_{1}, \ldots, Y_{n} are independent random variables with $Y_{j} \in \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right)$ for $j=1, \ldots, n$. Normalizing implies

$$
Z_{j}=\frac{Y_{j}-\mu_{j}}{\sigma_{j}} \in \mathcal{N}(0,1)
$$

so that we conclude

$$
\sum_{j=1}^{n}\left(\frac{Y_{j}-\mu_{j}}{\sigma_{j}}\right)^{2} \in \chi^{2}(n)
$$

In particular, if Y_{1}, \ldots, Y_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
\begin{equation*}
\frac{1}{\sigma^{2}} \sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2} \in \chi^{2}(n) . \tag{*}
\end{equation*}
$$

Example. If $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent and identically distributed $\mathcal{N}\left(\mu, \sigma^{2}\right)$, show that

$$
\bar{Y}=\frac{1}{n} \sum_{j=1}^{n} Y_{j} \in \mathcal{N}\left(\mu, \sigma^{2} / n\right)
$$

Solution. This can be shown using moment generating functions. That is, recall that if $Y \in \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
m_{Y}(t)=\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\} .
$$

Since the moment generating function of a sum of independent random variables is the product of the individual moment generating functions, we conclude

$$
m_{\bar{Y}}(t)=\prod_{j=1}^{n} m_{Y_{j}}(t / n)=\exp \left\{\sum_{j=1}^{n}\left(\mu \frac{t}{n}+\frac{\sigma^{2} t^{2}}{2 n^{2}}\right)\right\}=\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2 n}\right\}
$$

which we recognize as the moment generating function of a $\mathcal{N}\left(\mu, \sigma^{2} / n\right)$ random variable.
Example. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent and identically distributed $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variables, and let

$$
S^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}
$$

be the sample variance. We write

$$
\left(Y_{j}-\bar{Y}\right)^{2}=\left(Y_{j}-\mu+\mu-\bar{Y}\right)^{2}=\left(Y_{j}-\mu\right)^{2}+(\bar{Y}-\mu)^{2}-2\left(Y_{j}-\mu\right)(\bar{Y}-\mu)
$$

and observe that

$$
\sum_{j=1}^{n}\left(Y_{j}-\mu\right)(\bar{Y}-\mu)=(\bar{Y}-\mu) \sum_{j=1}^{n}\left(Y_{j}-\mu\right)=(\bar{Y}-\mu)(n \bar{Y}-n \mu)=n(\bar{Y}-\mu)^{2}
$$

which gives

$$
\sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}=\sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2}+\sum_{j=1}^{n}(\bar{Y}-\mu)^{2}-2 n(\bar{Y}-\mu)^{2}=\sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2}-n(\bar{Y}-\mu)^{2}
$$

We now write

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2}-\frac{n}{\sigma^{2}}(\bar{Y}-\mu)^{2},
$$

or equivalently,

$$
\frac{1}{\sigma^{2}} \sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}+\frac{n}{\sigma^{2}}(\bar{Y}-\mu)^{2} .
$$

Let

$$
U=\frac{1}{\sigma^{2}} \sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2}, \quad U_{1}=\frac{(n-1) S^{2}}{\sigma^{2}}, \quad U_{2}=\frac{n}{\sigma^{2}}(\bar{Y}-\mu)^{2}
$$

so that $U=U_{1}+U_{2}$, and observe from (*) that

$$
U=\frac{1}{\sigma^{2}} \sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2} \in \chi^{2}(n) .
$$

We also observe that

$$
U_{2}=\frac{n}{\sigma^{2}}(\bar{Y}-\mu)^{2}=\left(\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}\right)^{2} \in \chi^{2}(1)
$$

since

$$
\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \in \mathcal{N}(0,1) .
$$

Since \bar{Y} and S^{2} are independent, we conclude that U_{1} and U_{2} are independent. Thus, using the fact that the moment generating function of a sum of independent random variables is the product of the individual moment generating functions, we see that $\psi_{U}(t)=\psi_{U_{1}}(t) \cdot \psi_{U_{2}}(t)$ and so using the facts that $U \in \chi^{2}(n)=\Gamma(n / 2,2)$ and $U_{2} \in \chi^{2}(1)=\Gamma(1 / 2,2)$, we conclude

$$
\psi_{U_{1}}(t)=\frac{\psi_{U}(t)}{\psi_{U_{2}}(t)}=\frac{\frac{1}{(1-2 t)^{n / 2}}}{\frac{1}{(1-2 t)^{1 / 2}}}=\frac{1}{(1-2 t)^{(n-1) / 2}} \quad \text { for } \quad t<\frac{1}{2}
$$

That is, $U_{1} \in \Gamma((n-1) / 2,2)=\chi^{2}(n-1)$ or, in other words,

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \in \chi^{2}(n-1)
$$

Example. Show that if $Z \in \mathcal{N}(0,1)$ and $Y \in \chi^{2}(m)$ are independent random variables, then

$$
\frac{Z}{\sqrt{Y / m}} \in t(m)
$$

Solution. This was actually Problem \#9 of Chapter 1 and given on Assignment \#3.
We can finally prove our desired theorem and establish the t-test.
Proof. The fact that \bar{Y} and S^{2} are independent implies that

$$
Z=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \in \mathcal{N}(0,1)
$$

and

$$
Y=\frac{(n-1) S^{2}}{\sigma^{2}} \in \chi^{2}(n-1)
$$

are also independent. Thus, by the previous example,

$$
\frac{Z}{\sqrt{Y /(n-1)}}=\frac{\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \in t(n-1)
$$

and the proof is complete.

