
Statistics 351 (Fall 2009)
The t-Test for Independent Normal Random Variables

Our goal is to explain the t-test from first-year statistics.

Theorem. Let Y1, Y2, . . . , Yn be independent and identically distributed N (µ, σ2) random
variables, and suppose that

Y =
1

n

n∑
j=1

Yj and S2 =
1

n− 1

n∑
j=1

(Yj − Y )2

denote the sample mean and sample variance, respectively. If we define the random variable

T =
Y − µ
S/
√
n
,

then T ∈ t(n− 1); that is, T has a t-distribution with n− 1 degrees of freedom.

The main step in the proof of this theorem is the independence of Y and S2 established last
lecture. However, there are a number of other preliminary results that will also be needed.

Definition. For m = 1, 2, 3, . . ., we say that a random variable X has a t-distribution with
m degrees of freedom if the density function of X is

fX(x) =
Γ
(
m+1

2

)
√
πmΓ

(
m
2

) (1 +
x2

m

)−m+1
2

, −∞ < x <∞.

Definition. For m = 1, 2, 3, . . ., we say that a random variable X has a chi-squared distri-
bution with m degrees of freedom if the density function of X is

fX(x) =
2−m/2

Γ(m/2)
x

m
2
−1e−x/2, x > 0.

In other words, X ∈ χ2(m) if and only if X ∈ Γ(m/2, 2).

Remark. Observe that χ2(2) = Γ(1, 2) = Exp(2).

Example. Show that if Z ∈ N (0, 1), then Z2 ∈ χ2(1).

Solution. Suppose that X = Z2. For x > 0, the distribution function of X is

FX(x) = P{X ≤ x} = P{Z2 ≤ x}
= P{−

√
x ≤ Z ≤

√
x}

= P{Z ≤
√
x} − P{Z ≤ −

√
x}

=
1√
2π

∫ √x
0

exp

{
−z

2

2

}
dz − 1√

2π

∫ −√x
0

exp

{
−z

2

2

}
dz



so that the density of X is

fX(x) = F ′X(x) =
1√
2π
e−x/2 · 1

2
√
x
− 1√

2π
e−x/2 ·

(
− 1

2
√
x

)
=

1√
2π
x−1/2e−x/2, x > 0.

Since Γ(1/2) =
√
π, we recognize the density of X as the density of a χ2(1) random variable.

That is, Z2 ∈ χ2(1) as required.

Example. If X1 ∈ Γ(p1, a) and X2 ∈ Γ(p2, a) are independent, show X1 +X2 ∈ Γ(p1 +p2, a).

Solution. We actually did this in Lecture #6 using the transformation theorem (Theorem
1.2.1); see Problem #39 of Chapter 1 as well. The easier way to verify this is to use moment
generating functions. Recall that the moment generating function of a sum of independent
random variables is the product of the individual moment generating functions. That is,

mX1+X2(t) = E(et(X1+X2)) = E(etX1) · E(etX2) = mX1(t) ·mX2(t).

As shown on page 67, the moment generating function of X ∈ Γ(p, a) is

mX(t) =
1

(1− at)p
for t <

1

a
.

Hence,

mX1+X2(t) = mX1(t) ·mX2(t) =
1

(1− at)p1
· 1

(1− at)p2
=

1

(1− at)p1+p2

for t < 1/a so that X1 +X2 ∈ Γ(p1 + p2, a) as required.

Example. In particular, combining the last two examples yields the following fact. If
Z1, . . . , Zn are independent and identically distributed N (0, 1) random variables, then

Z2
1 + · · ·+ Z2

n ∈ χ2(n).

Example. Suppose that Y1, . . . , Yn are independent random variables with Yj ∈ N (µj, σ
2
j )

for j = 1, . . . , n. Normalizing implies

Zj =
Yj − µj
σj

∈ N (0, 1)

so that we conclude
n∑
j=1

(
Yj − µj
σj

)2

∈ χ2(n).

In particular, if Y1, . . . , Yn are i.i.d. N (µ, σ2), then

1

σ2

n∑
j=1

(Yj − µ)2 ∈ χ2(n). (∗)



Example. If Y1, Y2, . . . , Yn are independent and identically distributed N (µ, σ2), show that

Y =
1

n

n∑
j=1

Yj ∈ N (µ, σ2/n).

Solution. This can be shown using moment generating functions. That is, recall that if
Y ∈ N (µ, σ2), then

mY (t) = exp

{
µt+

σ2t2

2

}
.

Since the moment generating function of a sum of independent random variables is the
product of the individual moment generating functions, we conclude

mY (t) =
n∏
j=1

mYj
(t/n) = exp

{
n∑
j=1

(
µ
t

n
+
σ2t2

2n2

)}
= exp

{
µt+

σ2t2

2n

}
which we recognize as the moment generating function of a N (µ, σ2/n) random variable.

Example. Let Y1, Y2, . . . , Yn be independent and identically distributed N (µ, σ2) random
variables, and let

S2 =
1

n− 1

n∑
j=1

(Yj − Y )2

be the sample variance. We write

(Yj − Y )2 = (Yj − µ+ µ− Y )2 = (Yj − µ)2 + (Y − µ)2 − 2(Yj − µ)(Y − µ)

and observe that

n∑
j=1

(Yj − µ)(Y − µ) = (Y − µ)
n∑
j=1

(Yj − µ) = (Y − µ)(nY − nµ) = n(Y − µ)2

which gives

n∑
j=1

(Yj − Y )2 =
n∑
j=1

(Yj − µ)2 +
n∑
j=1

(Y − µ)2 − 2n(Y − µ)2 =
n∑
j=1

(Yj − µ)2 − n(Y − µ)2.

We now write
(n− 1)S2

σ2
=

1

σ2

n∑
j=1

(Yj − µ)2 − n

σ2
(Y − µ)2,

or equivalently,
1

σ2

n∑
j=1

(Yj − µ)2 =
(n− 1)S2

σ2
+

n

σ2
(Y − µ)2.

Let

U =
1

σ2

n∑
j=1

(Yj − µ)2, U1 =
(n− 1)S2

σ2
, U2 =

n

σ2
(Y − µ)2



so that U = U1 + U2, and observe from (∗) that

U =
1

σ2

n∑
j=1

(Yj − µ)2 ∈ χ2(n).

We also observe that

U2 =
n

σ2
(Y − µ)2 =

(
Y − µ
σ/
√
n

)2

∈ χ2(1)

since
Y − µ
σ/
√
n
∈ N (0, 1).

Since Y and S2 are independent, we conclude that U1 and U2 are independent. Thus, using
the fact that the moment generating function of a sum of independent random variables is the
product of the individual moment generating functions, we see that ψU(t) = ψU1(t) · ψU2(t)
and so using the facts that U ∈ χ2(n) = Γ(n/2, 2) and U2 ∈ χ2(1) = Γ(1/2, 2), we conclude

ψU1(t) =
ψU(t)

ψU2(t)
=

1
(1−2t)n/2

1
(1−2t)1/2

=
1

(1− 2t)(n−1)/2
for t <

1

2

That is, U1 ∈ Γ((n− 1)/2, 2) = χ2(n− 1) or, in other words,

(n− 1)S2

σ2
∈ χ2(n− 1).

Example. Show that if Z ∈ N (0, 1) and Y ∈ χ2(m) are independent random variables,
then

Z√
Y/m

∈ t(m).

Solution. This was actually Problem #9 of Chapter 1 and given on Assignment #3.

We can finally prove our desired theorem and establish the t-test.

Proof. The fact that Y and S2 are independent implies that

Z =
Y − µ
σ/
√
n
∈ N (0, 1)

and

Y =
(n− 1)S2

σ2
∈ χ2(n− 1)

are also independent. Thus, by the previous example,

Z√
Y/(n− 1)

=

Y−µ
σ/
√
n√

(n−1)S2

σ2 /(n− 1)
=
Y − µ
S/
√
n
∈ t(n− 1)

and the proof is complete.


