Statistics 351 (Fall 2009)
The t-Test for Independent Normal Random Variables

Our goal is to explain the ¢-test from first-year statistics.

Theorem. Let Y1,Ys,...,Y, be independent and identically distributed N'(u,c?) random
variables, and suppose that
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denote the sample mean and sample variance, respectively. If we define the random variable
Y —p
S/yn’

then T € t(n — 1), that is, T has a t-distribution with n — 1 degrees of freedom.
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The main step in the proof of this theorem is the independence of Y and S? established last
lecture. However, there are a number of other preliminary results that will also be needed.

Definition. For m = 1,2, 3, ..., we say that a random variable X has a t-distribution with
m degrees of freedom if the density function of X is
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Definition. For m = 1,2, 3, ..., we say that a random variable X has a chi-squared distri-

bution with m degrees of freedom if the density function of X is
2—m/2
[(m/2)
In other words, X € x?(m) if and only if X € T'(m/2,2).
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Remark. Observe that x*(2) = I'(1,2) = Exp(2).
Example. Show that if Z € N(0,1), then Z? € x*(1).

Solution. Suppose that X = Z2. For x > 0, the distribution function of X is

Fx(z) = P{X <2} = P{Z*> <2}
= P{-Vz <Z <}
= P{Z <z} — P{Z < —/z}

e [ S el )



so that the density of X is
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x) = Fy(z) = e 2. (— ): a2 > 0.

Since I'(1/2) = /7, we recognize the density of X as the density of a x*(1) random variable.
That is, Z% € x?(1) as required.

Example. If X; € T'(p1,a) and X5 € T'(ps, a) are independent, show X;+ X5 € T'(p1 +p2, a).

Solution. We actually did this in Lecture #6 using the transformation theorem (Theorem
1.2.1); see Problem #39 of Chapter 1 as well. The easier way to verify this is to use moment
generating functions. Recall that the moment generating function of a sum of independent
random variables is the product of the individual moment generating functions. That is,

My x, (1) = E(e T H42)) = B(e) - E(e2) = mu, (1) - mux, (1).

As shown on page 67, the moment generating function of X € I'(p,a) is
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mx(t> = m for t < a

Hence,
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mx,+x,(t) = mx, (t) - mx,(t) = A—apm @ am = (1 — at)r+re

for t < 1/a so that X; + Xy € I'(py + pa, @) as required.

Example. In particular, combining the last two examples yields the following fact. If
Zy, ..., Zy, are independent and identically distributed N(0, 1) random variables, then

Zi+ -+ Z2 €} (n).

Example. Suppose that Yi,...,Y,, are independent random variables with Y; € N (u;, 0]2-)
for j = 1,...,n. Normalizing implies
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so that we conclude
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In particular, if Y7, ...,Y,, are i.i.d. N(u, 0?), then
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Example. If Y},Y5, ..., Y, are independent and identically distributed N (i, 0?), show that
— 1<
Y =— Y 2/n).
nZ 5 € N (i, 0%/n)

Solution. This can be shown using moment generating functions. That is, recall that if
Y € N(p,0?), then

o?t?
my (t) = exp {ut + T} :

Since the moment generating function of a sum of independent random variables is the
product of the individual moment generating functions, we conclude

ms(t) = ﬁlmyj(t/n) = exp {En: (u% + %) } = exp {ut + %}

j=1
which we recognize as the moment generating function of a N'(i,0%/n) random variable.

Example. Let Y},Y5, ..., Y, be independent and identically distributed N (i, %) random

variables, and let
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be the sample variance. We write
V=Y = —ptp=Y)? = ;- p)+ —p)?=20Y; - )Y — p)

and observe that
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which gives
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We now write

or equivalently,

Let



so that U = Uy + Us, and observe from (x) that

We also observe that

since

Since Y and S? are independent, we conclude that U; and U, are independent. Thus, using
the fact that the moment generating function of a sum of independent random variables is the
product of the individual moment generating functions, we see that 1y (t) = ¥y, (t) - Yy, (t)
and so using the facts that U € x?(n) = ['(n/2,2) and U, € x*(1) = I'(1/2,2), we conclude
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That is, U; € T'((n —1)/2,2) = x*(n — 1) or, in other words,
(n —1)52

Example. Show that if Z € N(0,1) and Y € x?(m) are independent random variables,

then
A

VY/m

Solution. This was actually Problem #9 of Chapter 1 and given on Assignment #3.

€ t(m).

We can finally prove our desired theorem and establish the ¢-test.

Proof. The fact that Y and S? are independent implies that
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and
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Y = € x*(n—1)

are also independent. Thus, by the previous example,
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and the proof is complete. O]
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