
Statistics 351 (Fall 2009)
Functions of Multivariate Random Variables

Example. (Chapter 1, Problem #8) Suppose that X ∈ N (0, 1) and Y ∈ N (0, 1) are
independent random variables. Show that X/Y ∈ C(0, 1).

Solution. We start with a bivariate random vector (X,Y )′ (i.e., two random variables), but
we want the distribution of just one random variable, namely X/Y .

The “trick” is to let U = X/Y and to introduce an auxiliary variable V which may be
arbitrarily chosen. (Although it may be arbitrary, choose it suitably!)

Let U = X/Y and V = Y so that solving for X and Y gives

X = UV and Y = V.

The Jacobian of this transformation is given by
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The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (uv, v) · |J | = |v|fX(uv)fY (v)

using the assumed independence of X and Y . Substituting in the corresponding densities
gives
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provided −∞ < u, v < ∞. The marginal density of U is
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since the integrand is even. Making the substitution z = −v2(u2 + 1)/2 so that dz =
−v(u2 + 1) dv gives

fU(u) =
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for −∞ < u < ∞. We recognize that this is the density of a C(0, 1) random variable, and
so we conclude that U = X/Y ∈ C(0, 1).

Example. (Chapter 1, Problem #39) Suppose that X1 ∈ Γ(a1, b) and X2 ∈ Γ(a2, b) are in-
dependent random variables. Show that X1/X2 and X1+X2 are independent, and determine
their distributions.

Solution. Since X1 and X2 are independent, their joint density is

fX1,X2(x1, x2) = fX1(x1)·fX2(x2) =

{
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e−x1/b−x2/b, for x1 > 0, x2 > 0,

0, otherwise.



Let U = X1/X2 and V = X1 + X2 so that solving for X1 and X2 gives

X1 =
UV

U + 1
and X2 =

V
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.

The Jacobian of this transformation is given by
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The density of (U, V )′ is therefore given by

fU,V (u, v) = fX1,X2(uv(1 + u)−1, v(1 + u)−1) · |J |

=
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provided that 0 < u < ∞, 0 < v < ∞. The marginal density of U is

fU(u) =
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To evaluate ∫ ∞
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we make the substitution z = v
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so that dz = 1
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dv. This implies that∫ ∞
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This now implies that
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To find the marginal density of V we observe that since we can write the joint density as a
product of a function of u only multiplied by a function of v only, we conclude that U and
V are independent. That is,

fU,V (u, v) = fU(u) · fV (v)

where
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for v > 0. Notice that V = X1 + X2 ∈ Γ(a1 + a2, b).


