Statistics 351 (Fall 2009)
Functions of Multivariate Random Variables

Example. (Chapter 1, Problem #8) Suppose that X € AN(0,1) and Y € N(0,1) are
independent random variables. Show that X/Y € C(0,1).

Solution. We start with a bivariate random vector (X,Y’)’ (i.e., two random variables), but
we want the distribution of just one random variable, namely X/Y.

The “trick” is to let U = X/Y and to introduce an auxiliary variable V' which may be
arbitrarily chosen. (Although it may be arbitrary, choose it suitably!)

Let U = X/Y and V =Y so that solving for X and Y gives
X=UV and Y =V.

The Jacobian of this transformation is given by
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The density of (U, V')’ is therefore given by

foy(u,v) = fxy(uv,v) - |J| = |v]fx(uv) fy (v)

using the assumed independence of X and Y. Substituting in the corresponding densities
gives
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provided —oo < u,v < 0o. The marginal density of U is
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since the integrand is even. Making the substitution z = —v?(u® + 1)/2 so that dz =
—v(u? + 1) dv gives
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for —oo < u < oco. We recognize that this is the density of a C'(0,1) random variable, and
so we conclude that U = X/Y € C(0,1).

Example. (Chapter 1, Problem #39) Suppose that X; € I'(ay,b) and X5 € I'(ag, b) are in-
dependent random variables. Show that X; /X5 and X;+ X5 are independent, and determine
their distributions.

Solution. Since X; and X, are independent, their joint density is
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0, otherwise.



Let U = X;/X, and V = X; + X, so that solving for X; and X, gives
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The Jacobian of this transformation is given by
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The density of (U, V)" is therefore given by
fU,V(u’ U) = fX1,X2(UU(1 + u)_17 U(l + u)_l) ’ |J|
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provided that 0 < u < 00, 0 < v < co. The marginal density of U is
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we make the substitution z = 3 so that dz = %dv. This implies that
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To evaluate
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= b2 (ay + as).
This now implies that
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To find the marginal density of V' we observe that since we can write the joint density as a

product of a function of u only multiplied by a function of v only, we conclude that U and
V' are independent. That is,

u > 0.
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for v > 0. Notice that V = X; + X5 € T'(ay + as,b).



