Statistics 351-Intermediate Probability
 Fall 2009 (200930)
 Final Exam Solutions

Instructor: Michael Kozdron

1. (a) We see that $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$, and that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{y} 15 x^{2} y \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} 5 y^{4} \mathrm{~d} y=\left.y^{5}\right|_{0} ^{1}=1
$$

Thus, $f_{X, Y}$ is a legitimate density.

1. (b) We compute

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{x}^{1} 15 x^{2} y \mathrm{~d} y=\frac{15}{2} x^{2}\left(1-x^{2}\right), \quad 0<x<1 .
$$

1. (c) We compute

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x=\int_{0}^{1} x \cdot \frac{15}{2} x^{2}\left(1-x^{2}\right) \mathrm{d} x=\frac{15}{2}\left[\frac{1}{4}-\frac{1}{6}\right]=\frac{5}{8} .
$$

1. (d) We compute

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{15 x^{2} y}{\frac{15}{2} x^{2}\left(1-x^{2}\right)}=\frac{2 y}{1-x^{2}}, \quad x<y<1 .
$$

1. (e) We compute

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) \mathrm{d} y=\int_{x}^{1} y \cdot \frac{2 y}{1-x^{2}} \mathrm{~d} y=\frac{2\left(1-x^{3}\right)}{3\left(1-x^{2}\right)}
$$

1. (f) Using properties of conditional expectation (Theorem 2.2.1), we compute

$$
E(Y)=E(E(Y \mid X))=E\left(\frac{2\left(1-X^{3}\right)}{3\left(1-X^{2}\right)}\right)=\int_{0}^{1} \frac{2\left(1-x^{3}\right)}{3\left(1-x^{2}\right)} \cdot \frac{15}{2} x^{2}\left(1-x^{2}\right) \mathrm{d} x=5 \int_{0}^{1} x^{2}-x^{5} \mathrm{~d} x=\frac{5}{6} .
$$

1. (g) By definition, $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$. We know that $E(X)=5 / 8$ from (c) and $E(Y)=5 / 6$ from (f). Thus, we need to compute $E(X Y)$. One way to do this is to use properties of conditional expectation (Theorem 2.2.1) and the result from (e) to write

$$
E(X Y)=E(E(X Y \mid X))=E(X E(Y \mid X))=E\left(X \cdot \frac{2\left(1-X^{3}\right)}{3\left(1-X^{2}\right)}\right)=E\left(\frac{2 X\left(1-X^{3}\right)}{3\left(1-X^{2}\right)}\right)
$$

and proceed as in (f) to conclude

$$
E\left(\frac{2 X\left(1-X^{3}\right)}{3\left(1-X^{2}\right)}\right)=\int_{0}^{1} \frac{2 x\left(1-x^{3}\right)}{3\left(1-x^{2}\right)} \cdot \frac{15}{2} x^{2}\left(1-x^{2}\right) \mathrm{d} x=5 \int_{0}^{1} x^{3}-x^{6} \mathrm{~d} x=\frac{15}{28} .
$$

Alternatively, we can compute $E(X Y)$ directly; that is,

$$
\begin{aligned}
E(X Y) & =\int_{-\infty}^{\infty} x y f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{\{0<x<y<1\}} x y \cdot 15 x^{2} y \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{y} 15 x^{3} y^{2} \mathrm{~d} x \mathrm{~d} y \\
& =\left.\int_{0}^{1} y^{2} \cdot \frac{15}{4} x^{4}\right|_{x=0} ^{x=y} \mathrm{~d} y=\frac{15}{4} \int_{0}^{1} y^{6} \mathrm{~d} y=\frac{15}{28}
\end{aligned}
$$

In either case, we conclude

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{15}{28}-\frac{5}{8} \cdot \frac{5}{6}=\frac{5}{336} .
$$

2. (a) If $U=X Y$ and $V=X$, then solving for X and Y gives $X=V$ and $Y=U / V$, so that the Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
1 / v & -u / v^{2}
\end{array}\right|=-\frac{1}{v} .
$$

By Theorem 1.2.1, the joint density of $(U, V)^{\prime}$ is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(v, u / v) \cdot|J|=2(1-v) \cdot\left|-v^{-1}\right|=\frac{2(1-v)}{v}=\frac{2}{v}-2
$$

provided that $0<u<v<1$.
2. (b) It now follows that the density function of U is given by

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\int_{u}^{1} \frac{2}{v}-2 \mathrm{~d} v=\left.2(\log |v|-v)\right|_{u} ^{1}=2(u-\log |u|-1)
$$

provided that $0<u<1$.
3. (a) If $X=1 / Z$, then the distribution function of X is

$$
F_{X}(x)=P(X \leq x)=P(1 / Z \leq x)=P(Z \geq 1 / x)=1-P(Z \leq x)=1-\int_{-\infty}^{1 / x} \frac{b^{a}}{\Gamma(a)} z^{a-1} e^{-b z} \mathrm{~d} z
$$

This implies that the density function of X is

$$
f_{X}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F_{X}(x)=-\frac{b^{a}}{\Gamma(a)} \frac{1}{x^{a-1}} e^{-b / x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{x}=\frac{b^{a}}{\Gamma(a)} \frac{1}{x^{a+1}} e^{-b / x}
$$

provided $x>0$.
3. (b) By definition,
$f_{X, Y}(x, y)=f_{Y \mid X=x}(y) f_{X}(x)=\frac{1}{\sqrt{x \pi}} e^{-y^{2} / x} \cdot \frac{b^{a}}{\Gamma(a)} \frac{1}{x^{a+1}} e^{-b / x}=\frac{b^{a}}{\Gamma(a) \sqrt{\pi}} \frac{1}{x^{a+3 / 2}} \exp \left\{-\frac{1}{x}\left(y^{2}+b\right)\right\}$
so that

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x=\int_{0}^{\infty} \frac{b^{a}}{\Gamma(a) \sqrt{\pi}} \frac{1}{x^{a+3 / 2}} \exp \left\{-\frac{1}{x}\left(y^{2}+b\right)\right\} \mathrm{d} x
$$

To perform this integration let $u=1 / x, \mathrm{~d} u=-\left(1 / x^{2}\right) \mathrm{d} x$ so that

$$
f_{Y}(y)=\frac{b^{a}}{\Gamma(a) \sqrt{\pi}} \int_{0}^{\infty} u^{a-1 / 2} \exp \left\{-u\left(y^{2}+b\right)\right\} \mathrm{d} u
$$

Now let $v=u\left(y^{2}+b\right), \mathrm{d} v=\left(y^{2}+b\right) \mathrm{d} u$ so that

$$
\begin{aligned}
f_{Y}(y)=\frac{b^{a}}{\Gamma(a) \sqrt{\pi}} \frac{1}{\left(y^{2}+b\right)^{a+1 / 2}} \int_{0}^{\infty} v^{a-1 / 2} e^{-v} \mathrm{~d} v & =\frac{b^{a}}{\Gamma(a) \sqrt{\pi}} \frac{1}{\left(y^{2}+b\right)^{a+1 / 2}} \cdot \Gamma(a+1 / 2) \\
& =\frac{b^{a} \Gamma(a+1 / 2)}{\Gamma(a) \sqrt{\pi}\left(y^{2}+b\right)^{a+1 / 2}}
\end{aligned}
$$

provided $y>0$. Note that Y has a generalized t distribution. That is, we can write the density of Y as

$$
f_{Y}(y)=\frac{\Gamma(a+1 / 2)}{\sqrt{b \pi} \Gamma(a)} \frac{1}{\left(1+\frac{y^{2}}{b}\right)^{a+1 / 2}},
$$

and we see that if $a=n / 2$ and $b=n$ for any positive integer n, then $Y \in t(n)$.
4. (a) Using properties of conditional expectation (Theorem 2.2.1), we compute

$$
E(Y)=E(E(Y \mid X))=E(2 X)=2 E(X) .
$$

Since $E(Y)=4$ and $E(X)=\alpha$, we conclude that $4=2 \alpha$ or $\alpha=2$.
4. (b) Using properties of conditional expectation (Corollary 2.2.3.1), we know

$$
\operatorname{Var}(Y)=\operatorname{Var}(E(Y \mid X))+E(\operatorname{Var}(Y \mid X))
$$

and so

$$
23=\operatorname{Var}(2 X)+E\left(X^{2}+\beta\right)=4 \operatorname{Var}(X)+E\left(X^{2}\right)+\beta=4 \cdot 2+\left(2+2^{2}\right)+\beta=14+\beta .
$$

Thus, $\beta=9$.
5. The fact that X_{1}, X_{2}, X_{3} are independent with $X_{j} \in \operatorname{Exp}\left(\lambda_{j}\right)$ so that $P\left(X_{j}>y\right)=e^{-y / \lambda_{j}}$ implies

$$
\begin{aligned}
P(Y>y)=P\left(\min \left\{X_{1}, X_{2}, X_{3}\right\}>y\right) & =P\left(X_{1}>y, X_{2}>y, X_{3}>y\right) \\
& =P\left(X_{1}>y\right) P\left(X_{2}>y\right) P\left(X_{3}>y\right) \\
& =e^{-y / \lambda_{1}} \cdot e^{-y / \lambda_{2}} \cdot e^{-y / \lambda_{3}} \\
& =\exp \left\{-y\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)\right\} .
\end{aligned}
$$

Thus, the distribution function of Y is

$$
F_{Y}(y)=P(Y \leq y)=1-P(Y>y)=1-\exp \left\{-y\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)\right\}
$$

so that the density function of Y is

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right) \exp \left\{-y\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)\right\} .
$$

Note that $Y \in \operatorname{Exp}\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)$.
6. (a) It follows from Theorem 4.3 .1 that the joint density function of $\left(X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}\right)^{\prime}$ is

$$
f_{X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=4!f\left(y_{1}\right) f\left(y_{2}\right) f\left(y_{3}\right) f\left(y_{4}\right)=\frac{24}{a^{4}}
$$

provided that $0<y_{1}<y_{2}<y_{3}<y_{4}<a$. Therefore, the joint density function of $\left(X_{(2)}, X_{(3)}\right)^{\prime}$ is

$$
\begin{aligned}
f_{X_{(2)}, X_{(3)}}\left(y_{2}, y_{3}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}}\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \mathrm{d} y_{3} \mathrm{~d} y_{4} & =\int_{0}^{y_{2}} \int_{y_{3}}^{a} \frac{24}{a^{4}} \mathrm{~d} y_{4} \mathrm{~d} y_{2} \\
& =\frac{24}{a^{4}} y_{2}\left(a-y_{3}\right)
\end{aligned}
$$

provided that $0<y_{2}<y_{3}<a$.
6. (b) We see that

$$
P\left(X_{(3)}<a X_{(2)}\right)=\iint_{\{y<a x\}} f_{X_{(2)}, X_{(3)}}(x, y) \mathrm{d} x \mathrm{~d} y=\frac{24}{a^{4}} \iint_{\substack{y<a x, 0<x<y<a\}}} x(a-y) \mathrm{d} x \mathrm{~d} y
$$

Draw the region of integration to see that it can be described as $\{y / a<x<y, 0<y<a\}$ which implies

$$
P\left(X_{(3)}<a X_{(2)}\right)=\frac{24}{a^{4}} \int_{0}^{a} \int_{y / a}^{y} x(a-y) \mathrm{d} x \mathrm{~d} y .
$$

We now find

$$
\begin{gathered}
\frac{24}{a^{4}} \int_{0}^{a} \int_{y / a}^{y} x(a-y) \mathrm{d} x \mathrm{~d} y=\frac{12}{a^{4}} \int_{0}^{a}(a-y)\left(y^{2}-\frac{y^{2}}{a^{2}}\right) \mathrm{d} y=\frac{12}{a^{4}}\left(1-\frac{1}{a^{2}}\right) \int_{0}^{a} y^{2}(a-y) \mathrm{d} y \\
=\frac{12}{a^{4}}\left(1-\frac{1}{a^{2}}\right)\left[\frac{a y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{a}=\frac{12}{a^{4}}\left(1-\frac{1}{a^{2}}\right) \cdot \frac{a^{4}}{12}=1-\frac{1}{a^{2}}
\end{gathered}
$$

7. (a) Let

$$
B=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

so that

$$
B \mathbf{X}+\mathbf{b}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
X_{1}+X_{2}+X_{3} \\
X_{1}-X_{2}
\end{array}\right]=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\mathbf{Y}
$$

By Theorem 5.3.1, we conclude that $\mathbf{Y} \in N\left(B \boldsymbol{\mu}+\mathbf{b}, B \boldsymbol{\Lambda} B^{\prime}\right)$ where

$$
B \boldsymbol{\mu}+\mathbf{b}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
B \boldsymbol{\Lambda} B^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
3 & -2 & 1 \\
-2 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 2 \\
5 & -4 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 9
\end{array}\right]
$$

That is,

$$
\mathbf{Y} \in N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
4 & 2 \\
2 & 9
\end{array}\right]\right) .
$$

7. (b) If we write $\Sigma=\operatorname{Cov}(\mathbf{Y})$, then the density function of \mathbf{Y} is

$$
f_{\mathbf{Y}}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi \sqrt{\operatorname{det}[\Sigma]}} \exp \left\{-\frac{1}{2} \mathbf{y}^{\prime} \Sigma^{-1} \mathbf{y}\right\} .
$$

Since $\operatorname{det}[\Sigma]=36-4=32$ and

$$
\Sigma^{-1}=\left[\begin{array}{cc}
9 / 32 & -2 / 32 \\
-2 / 32 & 4 / 32
\end{array}\right]
$$

we conclude

$$
\begin{aligned}
f_{\mathbf{Y}}\left(y_{1}, y_{2}\right) & =\frac{1}{2 \pi \sqrt{32}} \exp \left\{-\frac{1}{2}\left(\frac{9}{32} y_{1}^{2}-\frac{4}{32} y_{1} y_{2}+\frac{4}{32} y_{2}^{2}\right)\right\} \\
& =\frac{1}{2 \pi \sqrt{32}} \exp \left\{-\frac{1}{2}\left(\frac{9}{32} y_{1}^{2}-\frac{1}{8} y_{1} y_{2}+\frac{1}{8} y_{2}^{2}\right)\right\} .
\end{aligned}
$$

7. (c) Since $Y_{1} \in N(0,4)$, we see that

$$
f_{Y_{1}}(0)=\frac{1}{2 \sqrt{2 \pi}} .
$$

Therefore,

$$
f_{Y_{2} \mid Y_{1}=0}\left(y_{2}\right)=\frac{f_{\mathbf{Y}}\left(0, y_{2}\right)}{f_{Y_{1}}(0)}=\frac{\frac{1}{2 \pi \sqrt{32}} \exp \left\{-\frac{1}{2}\left(\frac{1}{8} y_{2}^{2}\right)\right\}}{\frac{1}{2 \sqrt{2 \pi}}}=\frac{1}{\sqrt{2 \pi} \sqrt{8}} \exp \left\{-\frac{1}{2 \cdot 8} y_{2}^{2}\right\}
$$

which implies that $Y_{2} \mid Y_{1}=0 \in N(0,8)$.
8. (a) In order to find the eigenvalues of $\boldsymbol{\Lambda}$, we must find those values of λ such that $\operatorname{det}[\boldsymbol{\Lambda}-\lambda I]=0$. Therefore,

$$
\operatorname{det}[\boldsymbol{\Lambda}-\lambda I]=\operatorname{det}\left[\begin{array}{cc}
\frac{7}{4}-\lambda & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & \frac{5}{4}-\lambda
\end{array}\right]=\left(\frac{7}{4}-\lambda\right)\left(\frac{5}{4}-\lambda\right)-\frac{3}{16}=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2)
$$

so that the eigenvalues of $\boldsymbol{\Lambda}$ are $\lambda_{1}=1$ and $\lambda_{2}=2$.
8. (b) Since $\lambda_{1}=1$,

$$
\left[\boldsymbol{\Lambda}-\lambda_{1} I \mid \mathbf{0}\right]=\left[\begin{array}{cc|c}
\frac{3}{4} & -\frac{\sqrt{3}}{4} & 0 \\
-\frac{\sqrt{3}}{4} & \frac{1}{4} & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
3 & -\sqrt{3} & 0 \\
-\sqrt{3} & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
-\sqrt{3} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and since $\lambda_{2}=2$,

$$
\left[\boldsymbol{\Lambda}-\lambda_{2} I \mid \mathbf{0}\right]=\left[\begin{array}{cc|c}
-\frac{1}{4} & -\frac{\sqrt{3}}{4} & 0 \\
-\frac{\sqrt{3}}{4} & -\frac{3}{4} & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
-1 & -\sqrt{3} & 0 \\
-\sqrt{3} & -3 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & \sqrt{3} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

we conclude that eigenvectors for λ_{1} and λ_{2} are

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]
$$

respectively. Therefore, the diagonal matrix is

$$
D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

and the orthogonal matrix is

$$
C=\left[\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}\right]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

since $\left\|\mathbf{v}_{1}\right\|=\left\|\mathbf{v}_{2}\right\|=2$.
8. (c) If $\mathbf{Y}=C^{\prime} \mathbf{X}$, then by Theorem 5.3.1, \mathbf{Y} is MVN with mean $C^{\prime} \boldsymbol{\mu}$ and covariance matrix

$$
C^{\prime} \boldsymbol{\Lambda} C^{\prime \prime}=C^{\prime} \boldsymbol{\Lambda} C=C^{\prime}\left(C D C^{\prime}\right) C=\left(C^{\prime} C\right) D\left(C C^{\prime}\right)=I D I=D
$$

using our result from (b). Hence, we conclude

$$
\mathbf{Y} \in N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\right) .
$$

8. (d) Since \mathbf{Y} has a multivariate normal distribution, we know from Theorem 5.7.1 that the components of \mathbf{Y} are independent if and only if they are uncorrelated. From (c) we know that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$ so that Y_{1} and Y_{2} are, in fact, independent.
9. (a) It follows from Theorem 5.3.1 that $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ has a multivariate normal distribution since the components of \mathbf{Y} are linear combinations of the components of $\mathbf{X} \in N(\boldsymbol{\mu}, \boldsymbol{\Lambda})$. Therefore, Y_{1} and Y_{2} are each normally distributed. Hence, we simply need to compute the mean and variance of Y_{1} and Y_{2}. Since $Y_{2}=X_{2}$, and $X_{2} \in N(0,1)$, we immediately conclude $Y_{2} \in N(0,1)$. As for Y_{1}, we compute

$$
E\left(Y_{1}\right)=\frac{E\left(X_{1}\right)-\rho E\left(X_{2}\right)}{\sqrt{1-\rho^{2}}}=0
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(Y_{1}\right)=\operatorname{Var}\left(\frac{X_{1}-\rho X_{2}}{\sqrt{1-\rho^{2}}}\right) & =\frac{\operatorname{Var}\left(X_{1}-\rho X_{2}\right)}{1-\rho^{2}} \\
& =\frac{\operatorname{Cov}\left(X_{1}-\rho X_{2}, X_{1}-\rho X_{2}\right)}{1-\rho^{2}} \\
& =\frac{\operatorname{Cov}\left(X_{1}, X_{1}\right)-2 \rho \operatorname{Cov}\left(X_{1}, X_{2}\right)+\rho^{2} \operatorname{Cov}\left(X_{2}, X_{2}\right)}{1-\rho^{2}} \\
& =\frac{1-2 \rho^{2}+\rho^{2}}{1-\rho^{2}} \\
& =1
\end{aligned}
$$

since $X_{1} \in N(0,1)$ and $X_{2} \in N(0,1)$ with $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\rho$. Finally, we know from Theorem 5.7.1 that Y_{1} and Y_{2} are independent if and only if $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$. Since

$$
\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\operatorname{Cov}\left(\frac{X_{1}-\rho X_{2}}{\sqrt{1-\rho^{2}}}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)-\rho \operatorname{Cov}\left(X_{2}, X_{2}\right)}{\sqrt{1-\rho^{2}}}=\frac{\rho-\rho}{\sqrt{1-\rho^{2}}}=0,
$$

we conclude that Y_{1} and Y_{2} are, in fact, independent $N(0,1)$ random variables.
9. (b) Since Y_{1} and Y_{2} are independent $N(0,1)$ random variables, we know that Y_{1}^{2} and Y_{2}^{2} are independent $\chi^{2}(1)$ random variables. Therefore, $Y_{1}^{2}+Y_{2}^{2} \in \chi^{2}(2)$ and so

$$
\begin{aligned}
Y_{1}^{2}+Y_{2}^{2}=\left(\frac{X_{1}-\rho X_{2}}{\sqrt{1-\rho^{2}}}\right)^{2}+X_{2}^{2} & =\frac{X_{1}^{2}-2 \rho X_{1} X_{2}+\rho^{2} X_{2}^{2}}{1-\rho^{2}}+X_{2}^{2} \\
& =\frac{X_{1}^{2}-2 \rho X_{1} X_{2}+\rho^{2} X_{2}^{2}+\left(1-\rho^{2}\right) X_{2}^{2}}{1-\rho^{2}} \\
& =\frac{X_{1}^{2}-2 \rho X_{1} X_{2}+X_{2}^{2}}{1-\rho^{2}} \in \chi^{2}(2) .
\end{aligned}
$$

10. We begin by noting that $E\left(Z_{1}\right)=E\left(X_{1}\right)+E\left(Y_{1}\right)=0$ and $E\left(Z_{2}\right)=E\left(X_{2}\right)+E\left(Y_{2}\right)=0$ so that

$$
E(\mathbf{Z})=\left[\begin{array}{l}
E\left(Z_{1}\right) \\
E\left(Z_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Since \mathbf{X} and \mathbf{Y} are independent, we conclude that

$$
\operatorname{Cov}\left(X_{1}, Y_{1}\right)=\operatorname{Cov}\left(X_{1}, Y_{2}\right)=\operatorname{Cov}\left(X_{2}, Y_{1}\right)=\operatorname{Cov}\left(X_{2}, Y_{2}\right)=0
$$

Hence, we compute

$$
\begin{aligned}
& \operatorname{Var}\left(Z_{1}\right)=\operatorname{Var}\left(X_{1}+Y_{1}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(Y_{1}\right)+2 \operatorname{Cov}\left(X_{1}, Y_{1}\right)=1+1+0=2, \\
& \operatorname{Var}\left(Z_{2}\right)=\operatorname{Var}\left(X_{2}+Y_{2}\right)=\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(Y_{2}\right)+2 \operatorname{Cov}\left(X_{2}, Y_{2}\right)=1+1+0=2
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\operatorname{Cov}\left(X_{1}+Y_{1}, X_{2}+Y_{2}\right) & =\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, Y_{2}\right)+\operatorname{Cov}\left(X_{2}, Y_{1}\right)+\operatorname{Cov}\left(X_{2}, Y_{2}\right) \\
& =\rho+0+0-\rho \\
& =0
\end{aligned}
$$

so that

$$
\operatorname{Cov}(\mathbf{Z})=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

At this point, we see that \mathbf{Z} has the required mean vector and covariance matrix. The final step is to prove that \mathbf{Z} has a multivariate normal distribution. By Definition I it is sufficient to show that $a_{1} Z_{1}+a_{2} Z_{2}$ has a one-dimensional normal distribution for any $a_{1}, a_{2} \in \mathbb{R}$. Since \mathbf{X} is multivariate normal, we know from Definition I that $a_{1} X_{1}+a_{2} X_{2}$ has a one-dimensional normal distribution, and we also know from Definition I that $a_{1} Y_{1}+a_{2} Y_{2}$ has a one-dimensional normal distribution. Since \mathbf{X} and \mathbf{Y} are independent, we know that $a_{1} X_{1}+a_{2} X_{2}$ and $a_{1} Y_{1}+a_{2} Y_{2}$ are necessarily independent. Since the sum of independent one-dimensional normal distributions has a normal distribution, we know that

$$
\left(a_{1} X_{1}+a_{2} X_{2}\right)+\left(a_{1} Y_{1}+a_{2} Y_{2}\right)=a_{1}\left(X_{1}+Y_{1}\right)+a_{2}\left(X_{2}+Y_{2}\right)=a_{1} Z_{1}+a_{2} Z_{2}
$$

has a one-dimensional normal distribution. Thus,

$$
\mathbf{Z}=\left(Z_{1}, Z_{2}\right)^{\prime} \in N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)
$$

as required.
11. (a) Since

$$
f(x)=\frac{\sqrt{2}}{\sqrt{\pi}} e^{-x^{2} / 2}, \quad x>0,
$$

we conclude that

$$
F(x)=\frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2} / 2} \mathrm{~d} u
$$

for $x>0$ (and $F(x)=0$ for $x \leq 0$). Using Theorem 4.1.2, the density function of Y, the minimum of $n=2$ i.i.d. random variables with common density function $f(x)$ and common distribution function $F(x)$ is

$$
\begin{aligned}
f_{Y}(y)=2 f(y)[1-F(y)] & =2 \cdot \frac{\sqrt{2}}{\sqrt{\pi}} e^{-y^{2} / 2} \cdot\left[1-\frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{y} e^{-u^{2} / 2} \mathrm{~d} u\right] \\
& =2 \cdot \frac{\sqrt{2}}{\sqrt{\pi}} e^{-y^{2} / 2} \cdot \frac{\sqrt{2}}{\sqrt{\pi}} \int_{y}^{\infty} e^{-u^{2} / 2} \mathrm{~d} u \\
& =\frac{4}{\pi} e^{-y^{2} / 2} \int_{y}^{\infty} e^{-u^{2} / 2} \mathrm{~d} u
\end{aligned}
$$

provided that $y>0$.
11. (b) We find
$E\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y^{2}\left[\frac{4}{\pi} e^{-y^{2} / 2} \int_{y}^{\infty} e^{-u^{2} / 2} \mathrm{~d} u\right] \mathrm{d} y=\frac{4}{\pi} \int_{0}^{\infty} \int_{y}^{\infty} y^{2} e^{-y^{2} / 2} e^{-u^{2} / 2} \mathrm{~d} u \mathrm{~d} y$.
11. (c) In order to evaluate the double integral from (b) we switch to polar coordinates. That is, let $u=r \cos \theta, y=r \sin \theta, \mathrm{~d} u \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$ so that the region $\{0 \leq y<\infty, y \leq u<\infty\}$ in cartesian coordinates corresponds to $\{0 \leq r<\infty, 0 \leq \theta<\pi / 4\}$ in polar coordinates. Thus, we conclude

$$
\begin{aligned}
\frac{4}{\pi} \int_{0}^{\infty} \int_{y}^{\infty} y^{2} e^{-y^{2} / 2} e^{-u^{2} / 2} \mathrm{~d} u \mathrm{~d} y & =\frac{4}{\pi} \int_{0}^{\pi / 4} \int_{0}^{\infty}(r \sin \theta)^{2} e^{-r^{2} / 2} \cdot r \mathrm{~d} r \mathrm{~d} \theta \\
& =\frac{4}{\pi} \int_{0}^{\pi / 4} \sin ^{2} \theta \mathrm{~d} \theta \int_{0}^{\infty} r^{3} e^{-r^{2} / 2} \mathrm{~d} r
\end{aligned}
$$

To evaluate this make the substitution $v=r^{2} / 2, \mathrm{~d} v=r \mathrm{~d} r$ so that

$$
\int_{0}^{\infty} r^{3} e^{-r^{2} / 2} \mathrm{~d} r=\int_{0}^{\infty} 2 v e^{-v} \mathrm{~d} v=2 \int_{0}^{\infty} v^{2-1} e^{-v} \mathrm{~d} v=2 \Gamma(2)=2,
$$

and use the identity $\cos (2 \theta)=1-2 \sin ^{2}(\theta)$ to write

$$
\int_{0}^{\pi / 4} \sin ^{2} \theta \mathrm{~d} \theta=\int_{0}^{\pi / 4} \frac{1-\cos (2 \theta)}{2} \mathrm{~d} \theta=\left[\frac{\theta}{2}-\frac{\sin (2 \theta)}{4}\right]_{0}^{\pi / 4}=\frac{\pi}{8}-\frac{1}{4}
$$

Therefore, we conclude that

$$
E\left(Y^{2}\right)=\frac{4}{\pi} \cdot 2 \cdot\left[\frac{\pi}{8}-\frac{1}{4}\right]=1-\frac{2}{\pi} .
$$

Note that this is a special case of Youden's Angel Problem which was originally posed in 1953 by W.J. Youden. For further discussion, see Two problems in sets of measurements by M.G. Kendall (Biometrika, Vol. 41, No. 3/4 (Dec. 1954), pp. 560-564).

