Statistics 351-Intermediate Probability
Fall 2009 (200930)
Final Exam Solutions

Instructor: Michael Kozdron

1. (a) We see that fxy(z,y) >0 for all z, y € R, and that

0 [e's} 1 ry 1
/ / fX,Y(ﬁ, y)dzdy = / / 15x2y dedy = / 5y4 dy = y5
—o0 J —0o0 0o Jo 0

Thus, fxy is a legitimate density.
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1. (b) We compute

> ! 15
fx(x) = / fxy(@,y)dy = / batydy = Ja*(1-2%), 0<z<l

1. (c) We compute

—00

1. (d) We compute
fxy(z,y) 152%y 2y
7 — ) p— = 1
fY|X7x(y) fX(fB) L25x2(1_$2) 1— g2’ r<y<
1. (e) We compute

[e’¢) 1 2 2(1— 3
E(Y|X =z) = /_ Yfyix=2(y)dy = / Y1 _yx2 dy = M

T

1. (f) Using properties of conditional expectation (Theorem 2.2.1), we compute
E(Y)=E(E(Y|X))=E 201 - X% —/ 20— 2%) E2(1— 5d —5/1 S,
- B =x?)) T )y 32 2tV T ER T T

1. (g) By definition, Cov(X,Y) = E(XY) — E(X)E(Y). We know that F(X) = 5/8 from (c) and
E(Y)=5/6 from (f). Thus, we need to compute E(XY'). One way to do this is to use properties
of conditional expectation (Theorem 2.2.1) and the result from (e) to write

_v3 _ v3
E(XY)=FEEXY|X))=FEXEY|X)) =F (X . m) =F <m>

and proceed as in (f) to conclude

2X(1 - X% Lox(1—a3) 15 , 5 ! 15
p(Zf =2 ) [ 28 ) 202 - - S
<3(1—X2)> /0 30 =27 2x( z%)dx = 5/03: 28 dx 5%



Alternatively, we can compute F(XY) directly; that is,

o] 1 Y
zyfxy(z,y)dedy = // zy - 1522y dz dy = / / 1523y% dz dy
{0<z<y<1} 070

1 =y 1
15 15 15
0 =

4 Jo 28"
In either case, we conclude

E(XY) = /

—00

15 55 5
Cov(X,Y) = E(XY) = E(X)B(Y) = o2 — ¢ ¢ = 50

2. (a) f U = XY and V = X, then solving for X and Y gives X =V and Y = U/V, so that the
Jacobian of this transformation is

dr Oz

g 81}_‘0 1|1
Tloy oy [1/v —u/v?| T v
fe gl Wyl

By Theorem 1.2.1, the joint density of (U, V)’ is therefore given by

2(1 — 2
’1)71‘: ( /U):i_2
v v

fov(u,v) = fxy(v,u/v) - [J][=2(1-v) |-
provided that 0 < u < v < 1.

2. (b) It now follows that the density function of U is given by

1

o] 1
fU(u):/_ fU,V(u,U)dv:/ %—2dv:2(log]v|—v) — 2(u—log u| — 1)

u

provided that 0 < u < 1.

3. (a) If X =1/Z, then the distribution function of X is

1/ pe

20 lemb2 45,

Fx(z) = P(X <2) = P(1/Z <) = P(Z > 1/z) =1— P(Z <) = 1_/ o

This implies that the density function of X is

d b 1 d1 b 1
- F — —b/z 2 - _ —b/x
Jx(@) dz x(@) '(a) zo—1 c dzx T(a)zot! ‘
provided x > 0.
3. (b) By definition,
1 2 bt 1 b 1 1
— — —y?/z ~bfx _ ¥ — (2 +b

fX,Y(may) fY\X:x(y)fX(x) \/ﬁe F(CL) xa—i—le F(a)ﬁ 2a+3/2 exp{ Jf(y + )}

so that - o e . )
fr () :/OOfX,Y(fE,y)dCCZ/O WWGXP{_x(y2+b)} dz.



To perform this integration let v = 1/z, du = —(1/2?) dx so that

ba (o9} _
W) =7z |, v e {-uy’ +0)} du.
Now let v = u(y? +b), dv = (y* + b) du so that
b 1 i b 1
= @ Ydv = - 1/2
fr(y) F(a)\/Tr(y2+b)a+1/2/o v e Udv NONACET G (a+1/2)

T (a + 1/2)
T T(@VF (P + b

provided y > 0. Note that Y has a generalized ¢ distribution. That is, we can write the density of
Y as

_ T(a+1/2) 1
- VbrD(a) (14 ety

and we see that if a = n/2 and b = n for any positive integer n, then Y € t(n).

fr(y)

4. (a) Using properties of conditional expectation (Theorem 2.2.1), we compute
E(Y)=FE(E(Y|X))=E(2X)=2E(X).
Since E(Y) =4 and F(X) = «, we conclude that 4 = 2« or av = 2.

4. (b) Using properties of conditional expectation (Corollary 2.2.3.1), we know
Var(Y) = Var(E(Y|X)) + E(Var(Y|X))
and so
23 = Var(2X) + E(X* + B) =4Var(X) + E(X*) + 8 =4-2+ (2+2*) + B =14+ 3.

Thus, 8 =09.
5. The fact that X, X2, X3 are independent with X; € Exp()\;) so that P(X; > y) = e ¥/N
implies

P(Y > y) = P(min{ X1, X2, X3} > y) = P(X1 > y, X2 > y, X3 > y)

= P(X1 > y)P(X2 > y)P(X5 > y)
— efy/Al . efy/)‘2 . efy/)‘3

_ 1,11
= exp Y VISR .

P =Py sy =1 P =1-eo { (g )

Thus, the distribution function of Y is

so that the density function of Y is

d 1 1 1 1 1 1
(o) = ) <A1+A2+A3>exp{ y()\1+/\2+)\3>}

Note that Y € Exp (;—1 +x+ %3)



6. (a) It follows from Theorem 4.3.1 that the joint density function of (X (1), X(ay, X(3), X(4))" is

24
FX )Xy X)X 1o Y20 Y3, 9a) = AU (1) F(y2) F(y3) F(ya) = 7

provided that 0 < y; < y2 < y3 < y4 < a. Therefore, the joint density function of (X(Q), X)) is

Y2
IX 0, X (3 (Y2, Y3) / / FX (00X 29, X 3, X () (Y15 Y2, Y3, Ya) dy3 dya —/ ’ *dy4 dys
3

24
= y2(a—y3)
provided that 0 < y2 < y3 < a.
6. (b) We see that
P(X(3) < aXqo / fX )X (@, y) dzdy = — // y) dz dy.
ty<az} oé’fff@

Draw the region of integration to see that it can be described as {y/a < x <y, 0 < y < a} which
implies

P(X(3) < aX(y) 24// z(a —y)dzdy.
y/a

We now find

//y/a a—y dxdy—/ a—y <y—y>dy:i3<1—al2>/oay2(a_y)dy

_21 ay® " 2/ a4_1 1
a* a? 3 41, at a?) 12 a?’

7. (a) Let
1 1 1 0
B—[l 1 O} and b—[o]
so that
o] 0 X1+ X+ X Y;
_ _ X 2 30 _ || _
1 R R A R R
X3
By Theorem 5.3.1, we conclude that Y € N(Bu + b, BAB') where
1 1 1 ! 0 0
suev=lp o] L[]
-2
and
3 -2 1 1 1 1 1
P ER A B e B BN | PR N
1 0 1 1 0 1 0
That is,



7. (b) If we write ¥ = Cov(Y), then the density function of Y is

1 1 Iv—1 }
yp) = ——=—expi——y'sly b
Fr (. p2) 21/ det[X] p{ 2y Y

Since det[X] = 36 — 4 = 32 and

L [9/32 —2/32
u= [—2/32 4/32 ]

we conclude

9o 4 LA
32Y1 T Y12 T 55

9, 1o 1,
3291 8y1y2 83/2 .

1
fY(y1,y2) = mexp {—

1
21/ 32 P {
7. (c) Since Y7 € N(0,4), we see that

N~ N

1
0) = .
Mm(0) 2\2m
Therefore,
for ol YO mmeeizs () {_1 z}
Y2|Y1:0 Y2 le (O) : 12Tr m\/g p 9. 8y2

which implies that Y2|Y; =0 € N(0,8).

8. (a) In order to find the eigenvalues of A, we must find those values of A such that det[A—\I] = 0.
Therefore,

E_)‘ _43 7 5 3
det[A — M| = det =(-=A][S=A)]===XN=-3\x+2=N=-1(\—-2
<l = de _VB 5y (4 )(4 )16 t2=0-1(-2)
4 4

so that the eigenvalues of A are A\ = 1 and X\ = 2.

8. (b) Since A\ =1,

3 V3
A-nrjo=| ° - |0 [ 3 =vBlo]l _[-v3 1]0
! 1 V3 1 |0 0 0]0]"
and since Ay = 2,
1 V3
A nrjo=| ' TF O 7T -1 =3 1o 1 V3]0
i ~B 3 g —V3 =3 |0 0o o0 |0]



respectively. Therefore, the diagonal matrix is

. A1 0 10
D = dlag(Ah)\Q) = |:01 A2:| = |:0 2:|

and the orthogonal matrix is

C:[ Vi v ]:

[vall [[vall

[\ N[
[N M‘S
w

since ||vi]| = ||va|| = 2.

8. (¢) If Y = C’"X, then by Theorem 5.3.1, Y is MVN with mean C’p and covariance matrix
C'AC" = C'AC = C'(CDC")C = (C'C)D(CC") = IDI = D

using our result from (b). Hence, we conclude

ves (b 9

8. (d) Since Y has a multivariate normal distribution, we know from Theorem 5.7.1 that the
components of Y are independent if and only if they are uncorrelated. From (c) we know that
Cov(Y7,Ys2) = 0 so that Y7 and Y3 are, in fact, independent.

9. (a) It follows from Theorem 5.3.1 that Y = (Y7,Y2)" has a multivariate normal distribution
since the components of Y are linear combinations of the components of X € N(u,A). Therefore,
Y1 and Y3 are each normally distributed. Hence, we simply need to compute the mean and variance
of Y7 and Ys. Since Yo = X3, and X9 € N(0,1), we immediately conclude Y, € N(0,1). As for Y7,
we compute

E(X1) — pE(X2)

E(Y)) = — - 0
and
Var(¥i) = Var (Xl - ng) _ Var(X; — pXo)
Vi=p? L=
_ Cov(Xy — pXo, X1 — pX2)
1— p?

Cov(X1, X1) — 2p Cov(X1, Xo) + p? Cov(X2, Xo)

- —
1—2p%+ p?

=Tz

=1

since X7 € N(0,1) and X2 € N(0,1) with Cov(X1, X2) = p. Finally, we know from Theorem 5.7.1
that Y7 and Y5 are independent if and only if Cov(Y7,Y2) = 0. Since

COV(Yl,YQ) — Cov (Xl - pXQ’X2> _ COV(Xl,X2> — pCOV(XQ,Xg) p—p

V1= p? V1—p? 1—p?

we conclude that Y7 and Y are, in fact, independent N(0, 1) random variables.



9. (b) Since Y7 and Y5 are independent N(0,1) random variables, we know that Y2 and Y3 are
independent x?(1) random variables. Therefore, Y + Y7 € x?(2) and so

2
X1 — pX X2 —2pX1 Xy + p? X2
Y24 V2= 1 — pA2 L x2= 4 P1§+P 2 4 x2
V1-=p? L=p
_ X} —2pX1 X, + p?X3 + (1 - p*)X3
1— p?
X2—2pX1X2—|—X2
=~ 2 ex*(2).

1— p?
10. We begin by noting that E(Z;) = E(X;)+ E(Y1) =0 and E(Z;) = E(X2)+ E(Y2) = 0 so that
2@ = [p) = o]
Since X and Y are independent, we conclude that
Cov(X1, Y1) = Cov(X1,Ys) = Cov(Xs,Y7) = Cov(Xa, Ys) = 0.
Hence, we compute
Var(Z1) = Var(X; + Y1) = Var(X;) + Var(Y1) + 2Cov(X1,Y1) =1+ 140 =2,
Var(Z3) = Var(Xz + Ys) = Var(Xs) + Var(Y2) +2Cov(X2,Y2) =14+1+0=2
and
Cov(Zy,Z2) = Cov(X1 + Y1, X2 + Ys) = Cov(X1, X2) + Cov(Xy, Y2) + Cov(X2, Y7) + Cov(X2, Ya)

=p+0+0-0p
=0

so that

Cov(Z) = [(2) g} .

At this point, we see that Z has the required mean vector and covariance matrix. The final step is
to prove that Z has a multivariate normal distribution. By Definition I it is sufficient to show that
a1Z1 + asZo has a one-dimensional normal distribution for any a1, ao € R. Since X is multivariate
normal, we know from Definition I that a1 X7 +a2X5 has a one-dimensional normal distribution, and
we also know from Definition I that a1Y7 + asY> has a one-dimensional normal distribution. Since
X and Y are independent, we know that a; X1 4+ a2 X2 and a1Y; +a2Ys are necessarily independent.
Since the sum of independent one-dimensional normal distributions has a normal distribution, we
know that

(a1 X1+ a2X2) + (a1Y1 + a2Ys) = a1(X1 + Y1) + az(X2 + Y2) = a121 + aaZs

has a one-dimensional normal distribution. Thus,

z:(ZhZ2)/€N<m ’ [(2) gD

as required.



11. (a) Since

we conclude that

F(x) = :/[;/Ome_“deu

for x > 0 (and F(x) =0 for z < 0). Using Theorem 4.1.2, the density function of Y, the minimum
of n = 2 ii.d. random variables with common density function f(z) and common distribution

function F(x) is
2 v [1_ 2 [ du]

T
= ? \/?T/y e "2 du

4 _ 2/2 - —u?/2
=_—¢e Y e du
T y

fv(y)=2f(y)[l - Fy) =

provided that y > 0.

11. (b) We find

E(Y?) = / v’ fy(y)dy = / y? [ €_y2/2/ e /2 du] dy = / / yze_y2/26_"2/2 dudy.
— 00 0 v y e 0 y

11. (c) In order to evaluate the double integral from (b) we switch to polar coordinates. That is,
let w =rcosf, y =rsinf, dudy = rdrdf so that the region {0 < y < 0o, y < u < oo} in cartesian
coordinates corresponds to {0 < r < 0o, 0 < 0 < w/4} in polar coordinates. Thus, we conclude

4 o0 [oo w/4
/ / er_y2/2e_“2/2dudy: / / rsm@ /2 e drdf
™ Jo y
:/ sin 9d9/ rie 2 ar
T Jo 0

To evaluate this make the substitution v = r2/2, dv = rdr so that

o 9 o oo
/ e 2 dr = / 2ve”dv = 2/ v e dv = 2I'(2) = 2,
0 0 0

and use the identity cos(20) = 1 — 2sin?(6) to write

m/4 /41 _ . w/4
/ sin20df = / 1 — cos(20) d9 = 6 sin(20) _T_
0 0 2 2 4 0 8

N

Therefore, we conclude that

4 T 1
EYH=—-2-|-—-|=1-2=.
(¥) T [8 4} T
Note that this is a special case of Youden’s Angel Problem which was originally posed in 1953 by
W.J. Youden. For further discussion, see Two problems in sets of measurements by M.G. Kendall
(Biometrika, Vol. 41, No. 3/4 (Dec. 1954), pp. 560-564).



