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1. (a) We see that fX,Y (x, y) ≥ 0 for all x, y ∈ R, and that∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dx dy =
∫ 1

0

∫ y

0
15x2y dx dy =

∫ 1

0
5y4 dy = y5

∣∣∣∣1
0

= 1.

Thus, fX,Y is a legitimate density.

1. (b) We compute

fX(x) =
∫ ∞
−∞

fX,Y (x, y) dy =
∫ 1

x
15x2y dy =

15
2
x2(1− x2), 0 < x < 1.

1. (c) We compute

E(X) =
∫ ∞
−∞

xfX(x) dx =
∫ 1

0
x · 15

2
x2(1− x2) dx =

15
2

[
1
4
− 1

6

]
=

5
8
.

1. (d) We compute

fY |X=x(y) =
fX,Y (x, y)
fX(x)

=
15x2y

15
2 x

2(1− x2)
=

2y
1− x2

, x < y < 1.

1. (e) We compute

E(Y |X = x) =
∫ ∞
−∞

yfY |X=x(y) dy =
∫ 1

x
y · 2y

1− x2
dy =

2(1− x3)
3(1− x2)

.

1. (f) Using properties of conditional expectation (Theorem 2.2.1), we compute

E(Y ) = E(E(Y |X) ) = E

(
2(1−X3)
3(1−X2)

)
=
∫ 1

0

2(1− x3)
3(1− x2)

· 15
2
x2(1− x2) dx = 5

∫ 1

0
x2 − x5 dx =

5
6
.

1. (g) By definition, Cov(X,Y ) = E(XY )−E(X)E(Y ). We know that E(X) = 5/8 from (c) and
E(Y ) = 5/6 from (f). Thus, we need to compute E(XY ). One way to do this is to use properties
of conditional expectation (Theorem 2.2.1) and the result from (e) to write

E(XY ) = E(E(XY |X)) = E(XE(Y |X)) = E

(
X · 2(1−X3)

3(1−X2)

)
= E

(
2X(1−X3)
3(1−X2)

)
and proceed as in (f) to conclude

E

(
2X(1−X3)
3(1−X2)

)
=
∫ 1

0

2x(1− x3)
3(1− x2)

· 15
2
x2(1− x2) dx = 5

∫ 1

0
x3 − x6 dx =

15
28
.



Alternatively, we can compute E(XY ) directly; that is,

E(XY ) =
∫ ∞
−∞

xyfX,Y (x, y) dx dy =
∫∫

{0<x<y<1}

xy · 15x2y dx dy =
∫ 1

0

∫ y

0
15x3y2 dx dy

=
∫ 1

0
y2 · 15

4
x4

∣∣∣∣x=y
x=0

dy =
15
4

∫ 1

0
y6 dy =

15
28
.

In either case, we conclude

Cov(X,Y ) = E(XY )− E(X)E(Y ) =
15
28
− 5

8
· 5

6
=

5
336

.

2. (a) If U = XY and V = X, then solving for X and Y gives X = V and Y = U/V , so that the
Jacobian of this transformation is

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 0 1
1/v −u/v2

∣∣∣∣ = −1
v
.

By Theorem 1.2.1, the joint density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (v, u/v) · |J | = 2(1− v) · | − v−1| = 2(1− v)
v

=
2
v
− 2

provided that 0 < u < v < 1.

2. (b) It now follows that the density function of U is given by

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
∫ 1

u

2
v
− 2 dv = 2(log |v| − v)

∣∣∣∣1
u

= 2(u− log |u| − 1)

provided that 0 < u < 1.

3. (a) If X = 1/Z, then the distribution function of X is

FX(x) = P (X ≤ x) = P (1/Z ≤ x) = P (Z ≥ 1/x) = 1− P (Z ≤ x) = 1−
∫ 1/x

−∞

ba

Γ(a)
za−1e−bz dz.

This implies that the density function of X is

fX(x) =
d
dx
FX(x) = − ba

Γ(a)
1

xa−1
e−b/x · d

dx
1
x

=
ba

Γ(a)
1

xa+1
e−b/x

provided x > 0.

3. (b) By definition,

fX,Y (x, y) = fY |X=x(y)fX(x) =
1√
xπ

e−y
2/x · b

a

Γ(a)
1

xa+1
e−b/x =

ba

Γ(a)
√
π

1
xa+3/2

exp
{
−1
x

(y2 + b)
}

so that

fY (y) =
∫ ∞
−∞

fX,Y (x, y) dx =
∫ ∞

0

ba

Γ(a)
√
π

1
xa+3/2

exp
{
−1
x

(y2 + b)
}

dx.



To perform this integration let u = 1/x, du = −(1/x2) dx so that

fY (y) =
ba

Γ(a)
√
π

∫ ∞
0

ua−1/2 exp
{
−u(y2 + b)

}
du.

Now let v = u(y2 + b), dv = (y2 + b) du so that

fY (y) =
ba

Γ(a)
√
π

1
(y2 + b)a+1/2

∫ ∞
0

va−1/2e−v dv =
ba

Γ(a)
√
π

1
(y2 + b)a+1/2

· Γ(a+ 1/2)

=
ba Γ(a+ 1/2)

Γ(a)
√
π (y2 + b)a+1/2

provided y > 0. Note that Y has a generalized t distribution. That is, we can write the density of
Y as

fY (y) =
Γ(a+ 1/2)√
bπ Γ(a)

1

(1 + y2

b )a+1/2
,

and we see that if a = n/2 and b = n for any positive integer n, then Y ∈ t(n).

4. (a) Using properties of conditional expectation (Theorem 2.2.1), we compute

E(Y ) = E(E(Y |X) ) = E(2X) = 2E(X).

Since E(Y ) = 4 and E(X) = α, we conclude that 4 = 2α or α = 2.

4. (b) Using properties of conditional expectation (Corollary 2.2.3.1), we know

Var(Y ) = Var(E(Y |X)) + E(Var(Y |X))

and so

23 = Var(2X) + E(X2 + β) = 4 Var(X) + E(X2) + β = 4 · 2 + (2 + 22) + β = 14 + β.

Thus, β = 9.

5. The fact that X1, X2, X3 are independent with Xj ∈ Exp(λj) so that P (Xj > y) = e−y/λj

implies

P (Y > y) = P (min{X1, X2, X3} > y) = P (X1 > y,X2 > y,X3 > y)
= P (X1 > y)P (X2 > y)P (X3 > y)

= e−y/λ1 · e−y/λ2 · e−y/λ3

= exp
{
−y
(

1
λ1

+
1
λ2

+
1
λ3

)}
.

Thus, the distribution function of Y is

FY (y) = P (Y ≤ y) = 1− P (Y > y) = 1− exp
{
−y
(

1
λ1

+
1
λ2

+
1
λ3

)}
so that the density function of Y is

fY (y) =
d
dy
FY (y) =

(
1
λ1

+
1
λ2

+
1
λ3

)
exp

{
−y
(

1
λ1

+
1
λ2

+
1
λ3

)}
.

Note that Y ∈ Exp
(

1
λ1

+ 1
λ2

+ 1
λ3

)
.



6. (a) It follows from Theorem 4.3.1 that the joint density function of (X(1), X(2), X(3), X(4))′ is

fX(1),X(2),X(3),X(4)
(y1, y2, y3, y4) = 4!f(y1)f(y2)f(y3)f(y4) =

24
a4

provided that 0 < y1 < y2 < y3 < y4 < a. Therefore, the joint density function of (X(2), X(3))′ is

fX(2),X(3)
(y2, y3) =

∫ ∞
−∞

∫ ∞
−∞

fX(1),X(2),X(3),X(4)
(y1, y2, y3, y4) dy3 dy4 =

∫ y2

0

∫ a

y3

24
a4

dy4 dy2

=
24
a4
y2(a− y3)

provided that 0 < y2 < y3 < a.

6. (b) We see that

P (X(3) < aX(2)) =
∫∫
{y<ax}

fX(2),X(3)
(x, y) dx dy =

24
a4

∫∫
n

y<ax,
0<x<y<a

ox(a− y) dx dy.

Draw the region of integration to see that it can be described as {y/a < x < y, 0 < y < a} which
implies

P (X(3) < aX(2)) =
24
a4

∫ a

0

∫ y

y/a
x(a− y) dx dy.

We now find

24
a4

∫ a

0

∫ y

y/a
x(a− y) dx dy =

12
a4

∫ a

0
(a− y)

(
y2 − y2

a2

)
dy =

12
a4

(
1− 1

a2

)∫ a

0
y2(a− y) dy

=
12
a4

(
1− 1

a2

)[
ay3

3
− y4

4

]a
0

=
12
a4

(
1− 1

a2

)
· a

4

12
= 1− 1

a2
.

7. (a) Let

B =
[
1 1 1
1 −1 0

]
and b =

[
0
0

]
so that

BX + b =
[
1 1 1
1 −1 0

]X1

X2

X3

+
[
0
0

]
=
[
X1 +X2 +X3

X1 −X2

]
=
[
Y1

Y2

]
= Y.

By Theorem 5.3.1, we conclude that Y ∈ N(Bµµµ+ b, BΛΛΛB′) where

Bµµµ+ b =
[
1 1 1
1 −1 0

] 1
1
−2

+
[
0
0

]
=
[
0
0

]
and

BΛΛΛB′ =
[
1 1 1
1 −1 0

] 3 −2 1
−2 2 0
1 0 1

1 1
1 −1
1 0

 =
[
2 0 2
5 −4 1

]1 1
1 −1
1 0

 =
[
4 2
2 9

]
.

That is,

Y ∈ N
([

0
0

]
,

[
4 2
2 9

])
.



7. (b) If we write Σ = Cov(Y), then the density function of Y is

fY(y1, y2) =
1

2π
√

det[Σ]
exp

{
−1

2
y′Σ−1y

}
.

Since det[Σ] = 36− 4 = 32 and

Σ−1 =
[

9/32 −2/32
−2/32 4/32

]
,

we conclude

fY(y1, y2) =
1

2π
√

32
exp

{
−1

2

(
9
32
y2
1 −

4
32
y1y2 +

4
32
y2
2

)}
=

1
2π
√

32
exp

{
−1

2

(
9
32
y2
1 −

1
8
y1y2 +

1
8
y2
2

)}
.

7. (c) Since Y1 ∈ N(0, 4), we see that

fY1(0) =
1

2
√

2π
.

Therefore,

fY2|Y1=0(y2) =
fY(0, y2)
fY1(0)

=
1

2π
√

32
exp

{
−1

2

(
1
8y

2
2

)}
1

2
√

2π

=
1√

2π
√

8
exp

{
− 1

2 · 8
y2
2

}
which implies that Y2|Y1 = 0 ∈ N(0, 8).

8. (a) In order to find the eigenvalues of ΛΛΛ, we must find those values of λ such that det[ΛΛΛ−λI] = 0.
Therefore,

det[ΛΛΛ− λI] = det

7
4 − λ −

√
3

4

−
√

3
4

5
4 − λ

 =
(

7
4
− λ

)(
5
4
− λ
)
− 3

16
= λ2 − 3λ+ 2 = (λ− 1)(λ− 2)

so that the eigenvalues of ΛΛΛ are λ1 = 1 and λ2 = 2.

8. (b) Since λ1 = 1,

[ΛΛΛ− λ1I |000] =

 3
4 −

√
3

4 0

−
√

3
4

1
4 0

 ∼ [ 3 −
√

3 0
−
√

3 1 0

]
∼
[
−
√

3 1 0
0 0 0

]
,

and since λ2 = 2,

[ΛΛΛ− λ2I |000] =

 −1
4 −

√
3

4 0

−
√

3
4 −3

4 0

 ∼ [ −1 −
√

3 0
−
√

3 −3 0

]
∼
[

1
√

3 0
0 0 0

]
,

we conclude that eigenvectors for λ1 and λ2 are

v1 =
[

1√
3

]
and v2 =

[
−
√

3
1

]
,



respectively. Therefore, the diagonal matrix is

D = diag(λ1, λ2) =
[
λ1 0
0 λ2

]
=
[
1 0
0 2

]
and the orthogonal matrix is

C =
[

v1

||v1||
v2

||v2||

]
=

 1
2 −

√
3

2
√

3
2

1
2


since ||v1|| = ||v2|| = 2.

8. (c) If Y = C ′X, then by Theorem 5.3.1, Y is MVN with mean C ′µµµ and covariance matrix

C ′ΛΛΛC ′′ = C ′ΛΛΛC = C ′(CDC ′)C = (C ′C)D(CC ′) = IDI = D

using our result from (b). Hence, we conclude

Y ∈ N
([

0
0

]
,

[
1 0
0 2

])
.

8. (d) Since Y has a multivariate normal distribution, we know from Theorem 5.7.1 that the
components of Y are independent if and only if they are uncorrelated. From (c) we know that
Cov(Y1, Y2) = 0 so that Y1 and Y2 are, in fact, independent.

9. (a) It follows from Theorem 5.3.1 that Y = (Y1, Y2)′ has a multivariate normal distribution
since the components of Y are linear combinations of the components of X ∈ N(µµµ,ΛΛΛ). Therefore,
Y1 and Y2 are each normally distributed. Hence, we simply need to compute the mean and variance
of Y1 and Y2. Since Y2 = X2, and X2 ∈ N(0, 1), we immediately conclude Y2 ∈ N(0, 1). As for Y1,
we compute

E(Y1) =
E(X1)− ρE(X2)√

1− ρ2
= 0

and

Var(Y1) = Var

(
X1 − ρX2√

1− ρ2

)
=

Var(X1 − ρX2)
1− ρ2

=
Cov(X1 − ρX2, X1 − ρX2)

1− ρ2

=
Cov(X1, X1)− 2ρCov(X1, X2) + ρ2 Cov(X2, X2)

1− ρ2

=
1− 2ρ2 + ρ2

1− ρ2

= 1

since X1 ∈ N(0, 1) and X2 ∈ N(0, 1) with Cov(X1, X2) = ρ. Finally, we know from Theorem 5.7.1
that Y1 and Y2 are independent if and only if Cov(Y1, Y2) = 0. Since

Cov(Y1, Y2) = Cov

(
X1 − ρX2√

1− ρ2
, X2

)
=

Cov(X1, X2)− ρCov(X2, X2)√
1− ρ2

=
ρ− ρ√
1− ρ2

= 0,

we conclude that Y1 and Y2 are, in fact, independent N(0, 1) random variables.



9. (b) Since Y1 and Y2 are independent N(0, 1) random variables, we know that Y 2
1 and Y 2

2 are
independent χ2(1) random variables. Therefore, Y 2

1 + Y 2
2 ∈ χ2(2) and so

Y 2
1 + Y 2

2 =

(
X1 − ρX2√

1− ρ2

)2

+X2
2 =

X2
1 − 2ρX1X2 + ρ2X2

2

1− ρ2
+X2

2

=
X2

1 − 2ρX1X2 + ρ2X2
2 + (1− ρ2)X2

2

1− ρ2

=
X2

1 − 2ρX1X2 +X2
2

1− ρ2
∈ χ2(2).

10. We begin by noting that E(Z1) = E(X1)+E(Y1) = 0 and E(Z2) = E(X2)+E(Y2) = 0 so that

E(Z) =
[
E(Z1)
E(Z2)

]
=
[
0
0

]
.

Since X and Y are independent, we conclude that

Cov(X1, Y1) = Cov(X1, Y2) = Cov(X2, Y1) = Cov(X2, Y2) = 0.

Hence, we compute

Var(Z1) = Var(X1 + Y1) = Var(X1) + Var(Y1) + 2 Cov(X1, Y1) = 1 + 1 + 0 = 2,

Var(Z2) = Var(X2 + Y2) = Var(X2) + Var(Y2) + 2 Cov(X2, Y2) = 1 + 1 + 0 = 2

and

Cov(Z1, Z2) = Cov(X1 + Y1, X2 + Y2) = Cov(X1, X2) + Cov(X1, Y2) + Cov(X2, Y1) + Cov(X2, Y2)
= ρ+ 0 + 0− ρ
= 0

so that

Cov(Z) =
[
2 0
0 2

]
.

At this point, we see that Z has the required mean vector and covariance matrix. The final step is
to prove that Z has a multivariate normal distribution. By Definition I it is sufficient to show that
a1Z1 + a2Z2 has a one-dimensional normal distribution for any a1, a2 ∈ R. Since X is multivariate
normal, we know from Definition I that a1X1+a2X2 has a one-dimensional normal distribution, and
we also know from Definition I that a1Y1 + a2Y2 has a one-dimensional normal distribution. Since
X and Y are independent, we know that a1X1 +a2X2 and a1Y1 +a2Y2 are necessarily independent.
Since the sum of independent one-dimensional normal distributions has a normal distribution, we
know that

(a1X1 + a2X2) + (a1Y1 + a2Y2) = a1(X1 + Y1) + a2(X2 + Y2) = a1Z1 + a2Z2

has a one-dimensional normal distribution. Thus,

Z = (Z1, Z2)′ ∈ N
([

0
0

]
,

[
2 0
0 2

])
as required.



11. (a) Since

f(x) =
√

2√
π
e−x

2/2, x > 0,

we conclude that

F (x) =
√

2√
π

∫ x

0
e−u

2/2 du

for x > 0 (and F (x) = 0 for x ≤ 0). Using Theorem 4.1.2, the density function of Y , the minimum
of n = 2 i.i.d. random variables with common density function f(x) and common distribution
function F (x) is

fY (y) = 2f(y)[1− F (y)] = 2 ·
√

2√
π
e−y

2/2 ·

[
1−
√

2√
π

∫ y

0
e−u

2/2 du

]

= 2 ·
√

2√
π
e−y

2/2 ·
√

2√
π

∫ ∞
y

e−u
2/2 du

=
4
π
e−y

2/2

∫ ∞
y

e−u
2/2 du

provided that y > 0.

11. (b) We find

E(Y 2) =
∫ ∞
−∞

y2fY (y) dy =
∫ ∞

0
y2

[
4
π
e−y

2/2

∫ ∞
y

e−u
2/2 du

]
dy =

4
π

∫ ∞
0

∫ ∞
y

y2e−y
2/2e−u

2/2 dudy.

11. (c) In order to evaluate the double integral from (b) we switch to polar coordinates. That is,
let u = r cos θ, y = r sin θ, dudy = r dr dθ so that the region {0 ≤ y <∞, y ≤ u <∞} in cartesian
coordinates corresponds to {0 ≤ r <∞, 0 ≤ θ < π/4} in polar coordinates. Thus, we conclude

4
π

∫ ∞
0

∫ ∞
y

y2e−y
2/2e−u

2/2 dudy =
4
π

∫ π/4

0

∫ ∞
0

(r sin θ)2 e−r
2/2 · r dr dθ

=
4
π

∫ π/4

0
sin2 θ dθ

∫ ∞
0

r3e−r
2/2 dr

To evaluate this make the substitution v = r2/2, dv = r dr so that∫ ∞
0

r3e−r
2/2 dr =

∫ ∞
0

2ve−v dv = 2
∫ ∞

0
v2−1e−v dv = 2Γ(2) = 2,

and use the identity cos(2θ) = 1− 2 sin2(θ) to write∫ π/4

0
sin2 θ dθ =

∫ π/4

0

1− cos(2θ)
2

dθ =
[
θ

2
− sin(2θ)

4

]π/4
0

=
π

8
− 1

4
.

Therefore, we conclude that

E(Y 2) =
4
π
· 2 ·

[
π

8
− 1

4

]
= 1− 2

π
.

Note that this is a special case of Youden’s Angel Problem which was originally posed in 1953 by
W.J. Youden. For further discussion, see Two problems in sets of measurements by M.G. Kendall
(Biometrika, Vol. 41, No. 3/4 (Dec. 1954), pp. 560–564).


