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Final Exam Solutions

Instructor: Michael Kozdron

1. (a) We see that fX,Y (x, y) ≥ 0 for all x, y, and that∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ 1

0

∫ y

0
8xy dx dy =

∫ 1

0
4y3 dy = y4

∣∣∣∣1
0

= 1.

Thus, fX,Y is a legitimate density.

1. (b) We compute

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 1

x
8xy dy = 4x(1− x2), 0 < x < 1.

1. (c) We compute

E(X) =
∫ ∞

−∞
xfX(x) dx =

∫ 1

0
x · 4x(1− x2) dx =

4
3
− 4

5
=

8
15

.

1. (d) We compute

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=

8xy

4x(1− x2)
=

2y

(1− x2)
, x < y < 1.

1. (e) We compute

E(Y |X = x) =
∫ ∞

−∞
yfY |X=x(y) dy =

∫ 1

x
y · 2y

(1− x2)
dy =

2(1− x3)
3(1− x2)

.

1. (f) Using properties of conditional expectation (Theorem II.2.1), we compute

E(Y ) = E( E(Y |X) ) = E

(
2(1−X3)
3(1−X2)

)
=
∫ 1

0

2(1− x3)
3(1− x2)

· 4x(1− x2)dx =
8
3

∫ 1

0
x− x4dx =

4
5
.

2. (a) Let

B =
(

1 2 −1
0 1 −1

)
so that Y = BX. By Theorem V.3.1, Y is MVN with mean

Bµµµ =
(

1 2 −1
0 1 −1

)0
0
0

 =
(

0
0

)

and covariance matrix

BΛΛΛB′ =
(

1 2 −1
0 1 −1

) 2 0 −1
0 1 −1
−1 −1 2

 1 0
2 1
−1 −1

 =
(

14 8
8 5

)
.



2. (b) Note that

det
(

14 8
8 5

)
= 70− 64 = 6

so that (
14 8
8 5

)−1

=

( 5
6 −8

6

−8
6

14
6

)
.

Thus, we can conclude

fY1,Y2(y1, y2) =
1
2π

· 1√
6

exp
{
−1

2

(
5
6
y2
1 −

8
3
y1y2 +

7
3
y2
2

)}
.

2. (c) Since

ΛΛΛ =
(

14 8
8 5

)
we can immediately conclude that

ϕ(t1, t2) = exp
{
−1

2
(
14t21 + 16t1t2 + 5t22

)}
.

3. (a) Using the results of Section V.6 (in particular, equation (6.2) on page 130) we know that

X2|X1 = x ∈ N
(

µ2 + ρ
σ2

σ1
(x− µ1), σ2

2(1− ρ2)
)

.

Since σ2
1 = 1, σ2

2 = 25, we conclude that

ρ =
Cov(X1, X2)

σ1σ2
=

α

5
.

Therefore,

16 = Var(X2|X1) = σ2
2(1− ρ2) = 25

(
1− α2

25

)
= 25− α2

implying that α2 = 9. Hence, the two possible values of α are α = 3 and α = −3.

3. (b) From (a), we conclude that

1 = E(X2|X1 = 6) = µ2 + ρ
σ2

σ1
(x− µ1) = β +

α

5
· 5
1
(6− 5) = β + α.

Therefore, if α = 3, then β = −2 and if α = −3, then β = 4.

4. (a) In order to find the eigenvalues of ΛΛΛ, we must find those values of λ such that det(ΛΛΛ−λI) = 0.
Therefore,

det(ΛΛΛ−λI) = det
(

6− λ 2
2 9− λ

)
= (6−λ)(9−λ)−4 = λ2−15λ+54−4 = λ2−15λ+50 = (λ−5)(λ−10)

so that the eigenvalues of ΛΛΛ are λ1 = 5 and λ2 = 10.



4. (b) Since λ1 = 5,

(ΛΛΛ− λ1I | 0) =
(

1 2 0
2 4 0

)
∼
(

1 2 0
0 0 0

)
and since λ2 = 10,

(ΛΛΛ− λ2I | 0) =
(
−4 2 0
2 −1 0

)
∼
(

2 −1 0
0 0 0

)
we conclude that eigenvectors for λ1 and λ2 are

v1 =
(

1
−2

)
and v2 =

(
2
1

)
respectively. Therefore, the diagonal matrix is

D = diag(λ1, λ2) =
(

λ1 0
0 λ2

)
=
(

5 0
0 10

)
and the orthogonal matrix is

C =
(

v1

||v1||
v2

||v2||

)
=
(

1/
√

5 2/
√

5
−2/

√
5 1/

√
5

)
since ||v1|| = ||v2|| =

√
5.

4. (c) If Y = C ′X, then by Theorem V.3.1, Y is MVN with mean C ′µµµ and covariance matrix
C ′ΛΛΛC ′′ = C ′ΛΛΛC = D using our result from (b). Hence, we conclude

Y ∈ N

((
0
0

)
,

(
5 0
0 10

))
.

4. (d) Since Y is multivariate normal we know from Definition I that Y1 and Y2 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are indepen-
dent if and only if they are uncorrelated. From (c) we know that Cov(Y1, Y2) = 0 so that Y1 and
Y2 are, in fact, independent.

5. Notice that the density function of Y is non-zero only for 0 < y < 1 which implies that the
density function for X is non-zero only for 0 < x < 1. Therefore, suppose that 0 < y < 1 is fixed
so that fX|Y =y(x) = 1/y, 0 < x < y. If we now fix 0 < x < 1, then the range of allowable y is
x < y < 1. Hence, by definition,

fX,Y (x, y) = fX|Y =y(x)fY (y) =
1
y
· 20y3(1− y) = 20y2(1− y)

provided that 0 < x < y < 1. Thus, the marginal density function of X is

fX(x) =
∫ ∞

−∞
fX,Y (x, y)dy =

∫ 1

x
20y2(1− y)dy =

(
20
3

y3 − 20
4

y4

) ∣∣∣∣1
x

=
5
3
− 20

3
x3 + 5x4

provided that 0 < x < 1.



6. If U = g(X) and V = h(Y ), then solving for X and Y gives X = g−1(U) and Y = h−1(V ), so
that the Jacobian of this transformation is

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ ∂
∂ug−1(u) 0

0 ∂
∂vh−1(v)

∣∣∣∣ = ∂

∂u
g−1(u) · ∂

∂v
h−1(v).

By Theorem I.2.1, the joint density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (g−1(u), h−1(v)) · |J | = fX(g−1(u)) · fY (h−1(v)) · ∂

∂u
g−1(u) · ∂

∂v
h−1(v)

by the assumed independence of X and Y . Since we can write fU,V (u, v) as a function of u only
multiplied by a function of v only we conclude that U and V are, in fact, independent with

fU (u) = fX(g−1(u)) · ∂

∂u
g−1(u) and fV (v) = fY (h−1(v)) · ∂

∂v
h−1(v).

It is worth noting that these calculations are allowed since g and h are strictly increasing and
differentiable.

7. Observe that the expression∫ ∞

−∞

∫ ∞

−∞
fX(x1, x2) log (fX(x1, x2)) dx1 dx2

exactly equals E(log (fX(X1, X2))). Since

fX(x1, x2) =
1
2π

1√
det[ΛΛΛ]

exp{−1
2
x′ΛΛΛ−1x},

we see that
E(log (fX(X1, X2))) = − log(2π)− 1

2
log(det[ΛΛΛ])− 1

2
E(X′ΛΛΛ−1X).

Now, observe that if

ΛΛΛ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, then ΛΛΛ−1 =

1
1− ρ2

[
1/σ2

1 −ρ/σ1σ2

−ρ/σ1σ2 1/σ2
2

]
and so

X′ΛΛΛ−1X =
1

1− ρ2

(
X2

1

σ2
1

− 2ρ
X1X2

σ1σ2
+

X2
2

σ2
2

)
.

Taking expected values gives

E(X′ΛΛΛ−1X) =
1

1− ρ2
E
(

X2
1

σ2
1

− 2ρ
X1X2

σ1σ2
+

X2
2

σ2
2

)
=

1
1− ρ2

(1− 2ρ2 + 1) = 2.

Combining everything, we conclude that

E(log (fX(X1, X2))) = − log(2π)− 1
2

log(det[ΛΛΛ])− 1
2

E(X′ΛΛΛ−1X) = − log(2π)− 1
2

log(det[ΛΛΛ])− 1

and so
−
∫ ∞

−∞

∫ ∞

−∞
fX(x1, x2) log (fX(x1, x2)) dx1 dx2 = 1 + log(2π) +

1
2

log(det[ΛΛΛ])

as required.



8. If

Xj =
j∑

n=1

Sn−1(Sn − Sn−1).

then
Xj+1 = Xj + Sj(Sj+1 − Sj).

Therefore,

E(Xj+1|Sj) = E(Xj +Sj(Sj+1−Sj)|Sj) = E(Xj |Sj)+E(Sj(Sj+1−Sj)|Sj) = Xj +SjE(Sj+1|Sj)−S2
j

where we have “taken out what is known” three times. Furthermore,

E(Sj+1|Sj) = E(Sj + Yj+1|Sj) = Sj + E(Yj+1) = Sj

where we have again “taken out what is known,” and have used the facts that Yj+1 and Sj are
independent and E(Yj+1) = 0. Combining everything gives

E(Xj+1|Sj) = Xj + SjE(Sj+1|Sj)− S2
j = Xj + S2

j − S2
j = Xj

which proves that {Xj , j = 0, 1, 2, . . .} is, in fact, a martingale.

9. The joint density of X(1), X(2), X(3), X(4) is

fX(1),X(2),X(3),X(4)
(y1, y2, y3, y4) = 4! = 24

provided that 0 < y1 < y2 < y3 < y4 < 1. Thus, the joint density of X(2), X(3) is

fX(2),X(3)
(y2, y3) =

∫ 1

y3

∫ y2

0
24dy1dy2 = 24y2(1− y3)

provided that 0 < y2 < y3 < 1. If U = X(2)/X(3) and V = X(3), then solving for X(2) and X(3)

gives X(2) = UV and X(3) = V so that the Jacobian of this transformation is

J =

∣∣∣∣∣
∂y2

∂u
∂y2

∂v

∂y3

∂u
∂y3

∂v

∣∣∣∣∣ =
∣∣∣∣v u
0 1

∣∣∣∣ = v.

By Theorem I.2.1, the joint density of (U, V )′ is therefore given by

fU,V (u, v) = fX(2),X(3)
(uv, v) · |J | = 24uv(1− v) · v = 24uv2(1− v)

provided that 0 < u < 1 and 0 < v < 1. Notice that U and V are, in fact, independent with
fU (u) = 2u, 0 < u < 1, and fV (v) = 12v2(1 − v), 0 < v < 1. Finally, we see that the density of
W = U2 is

fW (w) =
d

dw
P (W ≤ w) =

d

dw
P (U ≤

√
w) =

1
2
√

w
fU (

√
w) =

1
2
√

w
· 2
√

w = 1

provided that 0 < w < 1. In other words, (X(2)/X(3))2 ∈ U(0, 1) as required.



10. (a) Since X5 ∈ Po(5), we find

P (X5 = j) =
5j

j!
e−5, j = 1, 2.

10. (b) By adding and subtracting X2, we compute

Var(X5|X2 = 1) = Var(X5 −X2 + X2|X2 = 1) = Var(X5 −X2|X2 = 1) + Var(X2|X2 = 1)
= Var(X5 −X2) = 3

using the fact that X5 −X2 ∈ Po(3) and X2 are independent.

10. (c) By adding and subtracting X2, we compute

Cov(X2, X4) = Cov(X2, X4 −X2 + X2) = Cov(X2, X4 −X2) + Cov(X2, X2) = 0 + Var(X2)

using the fact that the increments X4 − X2 and X2 are independent. Since X2 ∈ Po(2) we know
Var(X2) = 2 so that

Cov(X2, X4) = Var(X2) = 2.

10. (d) By adding and subtracting X2, we compute

E(X4|X2 = j) = E(X4−X2+X2|X2 = j) = E(X4−X2|X2 = j)+E(X2|X2 = j) = E(X4−X2)+j

where we have used the facts that E(X4 − X2|X2 = j) = E(X4 − X2) since X4 − X2 and X2

are independent, and E(X2|X2 = j) = j by “taking out what is known.” (See Theorems II.2.1
and II.2.2.) Since X4 −X2 ∈ Po(2) we know E(X4 −X2) = 2 so that

E(X4|X2 = j) = 2 + j, j = 0, 1, 2, . . . .

11. (a) Let {Xt, t ≥ 0} denote the Poisson process with intensity 1 according to which Jessica buys
pairs of shoes (where t measures weeks). The random number of shoes that Jessica buys in a year
is X52. Since Xt ∈ Po(t) for all t by the Poisson process assumption, we conclude that E(X52) = 52.

11. (b) If we use the fact that a Poisson process resets at fixed times, then the probability that
she bought 3 pairs of shoes during the first week of February given that she bought 8 pairs during
the four weeks of February is

P (X1 = 3|X4 = 8) =
P (X1 = 3, X4 = 8)

P (X4 = 8)
=

P (X1 = 3, X4 −X1 = 5)
P (X4 = 8)

=
P (X1 = 3)P (X4 −X1 = 5)

P (X4 = 8)
.

Since X1 ∈ Po(1), we find

P (X1 = 3) =
1
3!

e−1,

since X4 −X1 ∈ Po(3), we find

P (X4 −X1 = 5) =
35

5!
e−3,

and since X4 ∈ Po(4), we find

P (X4 = 8) =
48

8!
e−2.

Thus, the required probability is

P (X1 = 3|X4 = 8) =
1
3!e

−1 · 35

5! e
−3

48

8! e
−2

=
8!

3!5!
· 35

48
.


