Fall 2007 (200730)
Final Exam Solutions
Instructor: Michael Kozdron

1. (a) We see that $f_{X, Y}(x, y) \geq 0$ for all x, y, and that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} 8 x y d x d y=\int_{0}^{1} 4 y^{3} d y=\left.y^{4}\right|_{0} ^{1}=1
$$

Thus, $f_{X, Y}$ is a legitimate density.

1. (b) We compute

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{x}^{1} 8 x y d y=4 x\left(1-x^{2}\right), \quad 0<x<1
$$

1. (c) We compute

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \cdot 4 x\left(1-x^{2}\right) d x=\frac{4}{3}-\frac{4}{5}=\frac{8}{15}
$$

1. (d) We compute

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{8 x y}{4 x\left(1-x^{2}\right)}=\frac{2 y}{\left(1-x^{2}\right)}, \quad x<y<1
$$

1. (e) We compute

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) d y=\int_{x}^{1} y \cdot \frac{2 y}{\left(1-x^{2}\right)} d y=\frac{2\left(1-x^{3}\right)}{3\left(1-x^{2}\right)}
$$

1. (f) Using properties of conditional expectation (Theorem II.2.1), we compute

$$
E(Y)=E(E(Y \mid X))=E\left(\frac{2\left(1-X^{3}\right)}{3\left(1-X^{2}\right)}\right)=\int_{0}^{1} \frac{2\left(1-x^{3}\right)}{3\left(1-x^{2}\right)} \cdot 4 x\left(1-x^{2}\right) d x=\frac{8}{3} \int_{0}^{1} x-x^{4} d x=\frac{4}{5}
$$

2. (a) Let

$$
B=\left(\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -1
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem V.3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\binom{0}{0}
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
2 & 1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{cc}
14 & 8 \\
8 & 5
\end{array}\right)
$$

2. (b) Note that

$$
\operatorname{det}\left(\begin{array}{cc}
14 & 8 \\
8 & 5
\end{array}\right)=70-64=6
$$

so that

$$
\left(\begin{array}{cc}
14 & 8 \\
8 & 5
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{5}{6} & -\frac{8}{6} \\
-\frac{8}{6} & \frac{14}{6}
\end{array}\right)
$$

Thus, we can conclude

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi} \cdot \frac{1}{\sqrt{6}} \exp \left\{-\frac{1}{2}\left(\frac{5}{6} y_{1}^{2}-\frac{8}{3} y_{1} y_{2}+\frac{7}{3} y_{2}^{2}\right)\right\}
$$

2. (c) Since

$$
\boldsymbol{\Lambda}=\left(\begin{array}{cc}
14 & 8 \\
8 & 5
\end{array}\right)
$$

we can immediately conclude that

$$
\varphi\left(t_{1}, t_{2}\right)=\exp \left\{-\frac{1}{2}\left(14 t_{1}^{2}+16 t_{1} t_{2}+5 t_{2}^{2}\right)\right\}
$$

3. (a) Using the results of Section V. 6 (in particular, equation (6.2) on page 130) we know that

$$
X_{2} \left\lvert\, X_{1}=x \in \mathcal{N}\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)\right.
$$

Since $\sigma_{1}^{2}=1, \sigma_{2}^{2}=25$, we conclude that

$$
\rho=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}=\frac{\alpha}{5} .
$$

Therefore,

$$
16=\operatorname{Var}\left(X_{2} \mid X_{1}\right)=\sigma_{2}^{2}\left(1-\rho^{2}\right)=25\left(1-\frac{\alpha^{2}}{25}\right)=25-\alpha^{2}
$$

implying that $\alpha^{2}=9$. Hence, the two possible values of α are $\alpha=3$ and $\alpha=-3$.
3. (b) From (a), we conclude that

$$
1=\mathbb{E}\left(X_{2} \mid X_{1}=6\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)=\beta+\frac{\alpha}{5} \cdot \frac{5}{1}(6-5)=\beta+\alpha
$$

Therefore, if $\alpha=3$, then $\beta=-2$ and if $\alpha=-3$, then $\beta=4$.
4. (a) In order to find the eigenvalues of $\boldsymbol{\Lambda}$, we must find those values of λ such that $\operatorname{det}(\boldsymbol{\Lambda}-\lambda I)=0$. Therefore,
$\operatorname{det}(\boldsymbol{\Lambda}-\lambda I)=\operatorname{det}\left(\begin{array}{cc}6-\lambda & 2 \\ 2 & 9-\lambda\end{array}\right)=(6-\lambda)(9-\lambda)-4=\lambda^{2}-15 \lambda+54-4=\lambda^{2}-15 \lambda+50=(\lambda-5)(\lambda-10)$ so that the eigenvalues of $\boldsymbol{\Lambda}$ are $\lambda_{1}=5$ and $\lambda_{2}=10$.
4. (b) Since $\lambda_{1}=5$,

$$
\left(\Lambda-\lambda_{1} I \mid 0\right)=\left(\begin{array}{ll|l}
1 & 2 & 0 \\
2 & 4 & 0
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and since $\lambda_{2}=10$,

$$
\left(\boldsymbol{\Lambda}-\lambda_{2} I \mid 0\right)=\left(\begin{array}{cc|c}
-4 & 2 & 0 \\
2 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

we conclude that eigenvectors for λ_{1} and λ_{2} are

$$
\mathbf{v}_{1}=\binom{1}{-2} \quad \text { and } \quad \mathbf{v}_{2}=\binom{2}{1}
$$

respectively. Therefore, the diagonal matrix is

$$
D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right)
$$

and the orthogonal matrix is

$$
C=\left(\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}\right)=\left(\begin{array}{cc}
1 / \sqrt{5} & 2 / \sqrt{5} \\
-2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right)
$$

since $\left\|\mathbf{v}_{1}\right\|=\left\|\mathbf{v}_{2}\right\|=\sqrt{5}$.
4. (c) If $\mathbf{Y}=C^{\prime} \mathbf{X}$, then by Theorem V.3.1, \mathbf{Y} is MVN with mean $C^{\prime} \boldsymbol{\mu}$ and covariance matrix $C^{\prime} \boldsymbol{\Lambda} C^{\prime \prime}=C^{\prime} \boldsymbol{\Lambda} C=D$ using our result from (b). Hence, we conclude

$$
\mathbf{Y} \in N\left(\binom{0}{0},\left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right)\right)
$$

4. (d) Since \mathbf{Y} is multivariate normal we know from Definition I that Y_{1} and Y_{2} are each onedimensional normals. We also know from Theorem V.7.1 that the components of \mathbf{Y} are independent if and only if they are uncorrelated. From (c) we know that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$ so that Y_{1} and Y_{2} are, in fact, independent.
5. Notice that the density function of Y is non-zero only for $0<y<1$ which implies that the density function for X is non-zero only for $0<x<1$. Therefore, suppose that $0<y<1$ is fixed so that $f_{X \mid Y=y}(x)=1 / y, 0<x<y$. If we now fix $0<x<1$, then the range of allowable y is $x<y<1$. Hence, by definition,

$$
f_{X, Y}(x, y)=f_{X \mid Y=y}(x) f_{Y}(y)=\frac{1}{y} \cdot 20 y^{3}(1-y)=20 y^{2}(1-y)
$$

provided that $0<x<y<1$. Thus, the marginal density function of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{x}^{1} 20 y^{2}(1-y) d y=\left.\left(\frac{20}{3} y^{3}-\frac{20}{4} y^{4}\right)\right|_{x} ^{1}=\frac{5}{3}-\frac{20}{3} x^{3}+5 x^{4}
$$

provided that $0<x<1$.
6. If $U=g(X)$ and $V=h(Y)$, then solving for X and Y gives $X=g^{-1}(U)$ and $Y=h^{-1}(V)$, so that the Jacobian of this transformation is

$$
J=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{\partial}{\partial u} g^{-1}(u) & 0 \\
0 & \frac{\partial}{\partial v} h^{-1}(v)
\end{array}\right|=\frac{\partial}{\partial u} g^{-1}(u) \cdot \frac{\partial}{\partial v} h^{-1}(v)
$$

By Theorem I.2.1, the joint density of $(U, V)^{\prime}$ is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}\left(g^{-1}(u), h^{-1}(v)\right) \cdot|J|=f_{X}\left(g^{-1}(u)\right) \cdot f_{Y}\left(h^{-1}(v)\right) \cdot \frac{\partial}{\partial u} g^{-1}(u) \cdot \frac{\partial}{\partial v} h^{-1}(v)
$$

by the assumed independence of X and Y. Since we can write $f_{U, V}(u, v)$ as a function of u only multiplied by a function of v only we conclude that U and V are, in fact, independent with

$$
f_{U}(u)=f_{X}\left(g^{-1}(u)\right) \cdot \frac{\partial}{\partial u} g^{-1}(u) \quad \text { and } \quad f_{V}(v)=f_{Y}\left(h^{-1}(v)\right) \cdot \frac{\partial}{\partial v} h^{-1}(v)
$$

It is worth noting that these calculations are allowed since g and h are strictly increasing and differentiable.
7. Observe that the expression

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\mathbf{X}}\left(x_{1}, x_{2}\right) \log \left(f_{\mathbf{X}}\left(x_{1}, x_{2}\right)\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

exactly equals $\mathbb{E}\left(\log \left(f_{\mathbf{X}}\left(X_{1}, X_{2}\right)\right)\right)$. Since

$$
f_{\mathbf{X}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{\operatorname{det}[\boldsymbol{\Lambda}]}} \exp \left\{-\frac{1}{2} \bar{x}^{\prime} \boldsymbol{\Lambda}^{-1} \bar{x}\right\}
$$

we see that

$$
\mathbb{E}\left(\log \left(f_{\mathbf{X}}\left(X_{1}, X_{2}\right)\right)\right)=-\log (2 \pi)-\frac{1}{2} \log (\operatorname{det}[\boldsymbol{\Lambda}])-\frac{1}{2} \mathbb{E}\left(\mathbf{X}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{X}\right)
$$

Now, observe that if

$$
\boldsymbol{\Lambda}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right], \quad \text { then } \quad \boldsymbol{\Lambda}^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
1 / \sigma_{1}^{2} & -\rho / \sigma_{1} \sigma_{2} \\
-\rho / \sigma_{1} \sigma_{2} & 1 / \sigma_{2}^{2}
\end{array}\right]
$$

and so

$$
\mathbf{X}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{X}=\frac{1}{1-\rho^{2}}\left(\frac{X_{1}^{2}}{\sigma_{1}^{2}}-2 \rho \frac{X_{1} X_{2}}{\sigma_{1} \sigma_{2}}+\frac{X_{2}^{2}}{\sigma_{2}^{2}}\right)
$$

Taking expected values gives

$$
\mathbb{E}\left(\mathbf{X}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{X}\right)=\frac{1}{1-\rho^{2}} \mathbb{E}\left(\frac{X_{1}^{2}}{\sigma_{1}^{2}}-2 \rho \frac{X_{1} X_{2}}{\sigma_{1} \sigma_{2}}+\frac{X_{2}^{2}}{\sigma_{2}^{2}}\right)=\frac{1}{1-\rho^{2}}\left(1-2 \rho^{2}+1\right)=2
$$

Combining everything, we conclude that

$$
\mathbb{E}\left(\log \left(f_{\mathbf{X}}\left(X_{1}, X_{2}\right)\right)\right)=-\log (2 \pi)-\frac{1}{2} \log (\operatorname{det}[\boldsymbol{\Lambda}])-\frac{1}{2} \mathbb{E}\left(\mathbf{X}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{X}\right)=-\log (2 \pi)-\frac{1}{2} \log (\operatorname{det}[\boldsymbol{\Lambda}])-1
$$

and so

$$
-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\mathbf{X}}\left(x_{1}, x_{2}\right) \log \left(f_{\mathbf{X}}\left(x_{1}, x_{2}\right)\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=1+\log (2 \pi)+\frac{1}{2} \log (\operatorname{det}[\boldsymbol{\Lambda}])
$$

as required.
8. If

$$
X_{j}=\sum_{n=1}^{j} S_{n-1}\left(S_{n}-S_{n-1}\right) .
$$

then

$$
X_{j+1}=X_{j}+S_{j}\left(S_{j+1}-S_{j}\right)
$$

Therefore,
$E\left(X_{j+1} \mid S_{j}\right)=\mathbb{E}\left(X_{j}+S_{j}\left(S_{j+1}-S_{j}\right) \mid S_{j}\right)=\mathbb{E}\left(X_{j} \mid S_{j}\right)+\mathbb{E}\left(S_{j}\left(S_{j+1}-S_{j}\right) \mid S_{j}\right)=X_{j}+S_{j} \mathbb{E}\left(S_{j+1} \mid S_{j}\right)-S_{j}^{2}$
where we have "taken out what is known" three times. Furthermore,

$$
\mathbb{E}\left(S_{j+1} \mid S_{j}\right)=\mathbb{E}\left(S_{j}+Y_{j+1} \mid S_{j}\right)=S_{j}+\mathbb{E}\left(Y_{j+1}\right)=S_{j}
$$

where we have again "taken out what is known," and have used the facts that Y_{j+1} and S_{j} are independent and $\mathbb{E}\left(Y_{j+1}\right)=0$. Combining everything gives

$$
E\left(X_{j+1} \mid S_{j}\right)=X_{j}+S_{j} \mathbb{E}\left(S_{j+1} \mid S_{j}\right)-S_{j}^{2}=X_{j}+S_{j}^{2}-S_{j}^{2}=X_{j}
$$

which proves that $\left\{X_{j}, j=0,1,2, \ldots\right\}$ is, in fact, a martingale.
9. The joint density of $X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}$ is

$$
f_{X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=4!=24
$$

provided that $0<y_{1}<y_{2}<y_{3}<y_{4}<1$. Thus, the joint density of $X_{(2)}, X_{(3)}$ is

$$
f_{X_{(2)}, X_{(3)}}\left(y_{2}, y_{3}\right)=\int_{y_{3}}^{1} \int_{0}^{y_{2}} 24 d y_{1} d y_{2}=24 y_{2}\left(1-y_{3}\right)
$$

provided that $0<y_{2}<y_{3}<1$. If $U=X_{(2)} / X_{(3)}$ and $V=X_{(3)}$, then solving for $X_{(2)}$ and $X_{(3)}$ gives $X_{(2)}=U V$ and $X_{(3)}=V$ so that the Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial y_{2}}{\partial u} & \frac{\partial y_{2}}{\partial v} \\
\frac{\partial y_{3}}{\partial u} & \frac{\partial y_{3}}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
v & u \\
0 & 1
\end{array}\right|=v .
$$

By Theorem I.2.1, the joint density of $(U, V)^{\prime}$ is therefore given by

$$
f_{U, V}(u, v)=f_{X_{(2)}, X_{(3)}}(u v, v) \cdot|J|=24 u v(1-v) \cdot v=24 u v^{2}(1-v)
$$

provided that $0<u<1$ and $0<v<1$. Notice that U and V are, in fact, independent with $f_{U}(u)=2 u, 0<u<1$, and $f_{V}(v)=12 v^{2}(1-v), 0<v<1$. Finally, we see that the density of $W=U^{2}$ is

$$
f_{W}(w)=\frac{d}{d w} P(W \leq w)=\frac{d}{d w} P(U \leq \sqrt{w})=\frac{1}{2 \sqrt{w}} f_{U}(\sqrt{w})=\frac{1}{2 \sqrt{w}} \cdot 2 \sqrt{w}=1
$$

provided that $0<w<1$. In other words, $\left(X_{(2)} / X_{(3)}\right)^{2} \in U(0,1)$ as required.
10. (a) Since $X_{5} \in \operatorname{Po}(5)$, we find

$$
P\left(X_{5}=j\right)=\frac{5^{j}}{j!} e^{-5}, \quad j=1,2
$$

10. (b) By adding and subtracting X_{2}, we compute

$$
\begin{aligned}
\operatorname{Var}\left(X_{5} \mid X_{2}=1\right)=\operatorname{Var}\left(X_{5}-X_{2}+X_{2} \mid X_{2}=1\right) & =\operatorname{Var}\left(X_{5}-X_{2} \mid X_{2}=1\right)+\operatorname{Var}\left(X_{2} \mid X_{2}=1\right) \\
& =\operatorname{Var}\left(X_{5}-X_{2}\right)=3
\end{aligned}
$$

using the fact that $X_{5}-X_{2} \in \operatorname{Po}(3)$ and X_{2} are independent.
10. (c) By adding and subtracting X_{2}, we compute

$$
\operatorname{Cov}\left(X_{2}, X_{4}\right)=\operatorname{Cov}\left(X_{2}, X_{4}-X_{2}+X_{2}\right)=\operatorname{Cov}\left(X_{2}, X_{4}-X_{2}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)=0+\operatorname{Var}\left(X_{2}\right)
$$

using the fact that the increments $X_{4}-X_{2}$ and X_{2} are independent. Since $X_{2} \in \operatorname{Po}(2)$ we know $\operatorname{Var}\left(X_{2}\right)=2$ so that

$$
\operatorname{Cov}\left(X_{2}, X_{4}\right)=\operatorname{Var}\left(X_{2}\right)=2
$$

10. (d) By adding and subtracting X_{2}, we compute
$E\left(X_{4} \mid X_{2}=j\right)=E\left(X_{4}-X_{2}+X_{2} \mid X_{2}=j\right)=E\left(X_{4}-X_{2} \mid X_{2}=j\right)+E\left(X_{2} \mid X_{2}=j\right)=E\left(X_{4}-X_{2}\right)+j$
where we have used the facts that $E\left(X_{4}-X_{2} \mid X_{2}=j\right)=E\left(X_{4}-X_{2}\right)$ since $X_{4}-X_{2}$ and X_{2} are independent, and $E\left(X_{2} \mid X_{2}=j\right)=j$ by "taking out what is known." (See Theorems II.2.1 and II.2.2.) Since $X_{4}-X_{2} \in \operatorname{Po}(2)$ we know $E\left(X_{4}-X_{2}\right)=2$ so that

$$
E\left(X_{4} \mid X_{2}=j\right)=2+j, \quad j=0,1,2, \ldots
$$

11. (a) Let $\left\{X_{t}, t \geq 0\right\}$ denote the Poisson process with intensity 1 according to which Jessica buys pairs of shoes (where t measures weeks). The random number of shoes that Jessica buys in a year is X_{52}. Since $X_{t} \in \operatorname{Po}(t)$ for all t by the Poisson process assumption, we conclude that $\mathbb{E}\left(X_{52}\right)=52$.
12. (b) If we use the fact that a Poisson process resets at fixed times, then the probability that she bought 3 pairs of shoes during the first week of February given that she bought 8 pairs during the four weeks of February is

$$
P\left(X_{1}=3 \mid X_{4}=8\right)=\frac{P\left(X_{1}=3, X_{4}=8\right)}{P\left(X_{4}=8\right)}=\frac{P\left(X_{1}=3, X_{4}-X_{1}=5\right)}{P\left(X_{4}=8\right)}=\frac{P\left(X_{1}=3\right) P\left(X_{4}-X_{1}=5\right)}{P\left(X_{4}=8\right)}
$$

Since $X_{1} \in \operatorname{Po}(1)$, we find

$$
P\left(X_{1}=3\right)=\frac{1}{3!} e^{-1}
$$

since $X_{4}-X_{1} \in \operatorname{Po}(3)$, we find

$$
P\left(X_{4}-X_{1}=5\right)=\frac{3^{5}}{5!} e^{-3}
$$

and since $X_{4} \in \operatorname{Po}(4)$, we find

$$
P\left(X_{4}=8\right)=\frac{4^{8}}{8!} e^{-2}
$$

Thus, the required probability is

$$
P\left(X_{1}=3 \mid X_{4}=8\right)=\frac{\frac{1}{3!} e^{-1} \cdot \frac{3^{5}}{5!} e^{-3}}{\frac{4^{8}}{8!} e^{-2}}=\frac{8!}{3!5!} \cdot \frac{3^{5}}{4^{8}}
$$

