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Problem #2. Suppose that X ∈ C(m, a) so that the density of X is given by

fX(x) =
1
π
· a

a2 + (x−m)2
, −∞ < x <∞.

Let Y = 1/X. If X 6= 0, then for −∞ < y <∞ the distribution function of Y is

FY (y) = P (Y ≤ y) = P (1/X ≤ y) = P (X ≥ 1/y) = 1−P (X ≤ 1/y) = 1−
∫ 1/y

−∞

1
π
· a

a2 + (x−m)2
dx

so that the density function of Y is

fY (y) =
1
π
· a

a2 + (1/y −m)2
· 1
y2

=
1
π
· a

y2a2 + (1− ym)2

for −∞ < y < ∞. The only potential trouble is if X = 0 since Y = 1/X is not defined there.
However, since P (X = 0) = 0, this is not a problem. Thus,

fY (y) =
1
π
· a

y2a2 + (1− ym)2
, −∞ < y <∞.

Problem #1. This is a special case of Problem #2. If m = 0 and a = 1, then

fY (y) =
1
π
· 1
y2 + 1

, −∞ < y <∞,

so that Y = 1/X ∈ C(0, 1).

Problem #3. Suppose that T ∈ t(n) so that the density of T is given by

fT (x) =
Γ(n+1

2 )
√
πnΓ(n2 )

·
(

1 +
x2

n

)−(n+1)/2

, −∞ < x <∞.

Let Y = T 2. If y ≥ 0, then the distribution function of Y is given by

FY (y) = P (Y ≤ y) = P (T 2 ≤ y) = P (−√y ≤ T ≤ √y) =
∫ √y
−√y

fT (x) dx

=
∫ √y

0
fT (x) dx−

∫ −√y
0

fT (x) dx.

Taking derivatives with respect to y gives

fY (y) = fT (
√
y) · 1

2
√
y
− fT (−√y) · −1

2
√
y

=
1

2
√
y

( fT (
√
y) + fT (−√y) )

=
Γ(n+1

2 )
√
πny Γ(n2 )

·
(

1 +
y

n

)−(n+1)/2

=
Γ(1+n

2 )
(

1
n

)1/2
Γ(1

2) Γ(n2 )
· y1/2−1(

1 + y
n

)(1+n)/2
, y ≥ 0.

In order to write this last line, we have used the fact that Γ(1/2) =
√
π. Notice that this is the

density of an F (1, n) random variable.



Problem #4. Suppose that X ∈ F (m,n) so that the density of X is given by

fX(x) =
Γ(m+n

2 )
(
m
n

)n/2
Γ(m2 )Γ(n2 )

xm/2−1

(1 + mx
n )(m+n)/2

, 0 < x <∞.

Let Y = 1/X so that for 0 < y <∞ the distribution function of Y is

FY (y) = P (Y ≤ y) = P (1/X ≤ y) = P (X ≥ 1/y) = 1− P (X ≤ 1/y)

= 1−
∫ 1/y

−∞

Γ(m+n
2 )

(
m
n

)n/2
Γ(m2 )Γ(n2 )

xm/2−1

(1 + mx
n )(m+n)/2

dx.

Taking derivatives with respect to y gives

fY (y) =
Γ(m+n

2 )
(
m
n

)n/2
Γ(m2 )Γ(n2 )

y1−m/2

(1 + m
ny )(m+n)/2

· 1
y2

=
Γ(m+n

2 )
(
m
n

)n/2
Γ(m2 )Γ(n2 )

y1−m/2

( mny )(m+n)/2(1 + ny
m )(m+n)/2

· 1
y2

=
Γ(m+n

2 )
(
n
m

)m/2
Γ(m2 )Γ(n2 )

yn/2−1

(1 + ny
m )(m+n)/2

for y > 0. We recognize that this is the density of a F (n,m) random variable, and so we conclude
that Y = 1/X ∈ F (n,m).

Problem #5. Suppose that X ∈ C(0, 1) so that the density of X is given by

fX(x) =
1
π
· 1

1 + x2
, −∞ < x <∞.

Let Y = X2. If y ≥ 0, then the distribution function of Y is given by

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √y) =
∫ √y
−√y

fX(x) dx

=
∫ √y

0
fX(x) dx−

∫ −√y
0

fX(x) dx.

Taking derivatives with respect to y gives

fY (y) = fX(
√
y) · 1

2
√
y
− fX(−√y) · −1

2
√
y

=
1

2
√
y

( fX(
√
y) + fX(−√y) ) =

1
π
√
y
· 1

1 + y
, y ≥ 0.

Notice that this is the density of an F (1, 1) random variable. (Recall that Γ(1) = 1, Γ(1/2) =
√
π.)

Problem #6. If X ∈ β(1, 1), then the density function of X is

fX(x) =
Γ(1 + 1)
Γ(1)Γ(1)

x1−1(1− x)1−1 = 1, 0 < x < 1.

(We have used the fact that Γ(2) = Γ(1) = 1.) Since the density of X is also that of a uniform
random variable, we conclude X ∈ U(0, 1). Therefore, β(1, 1) = U(0, 1).



Problem #7. Suppose that X ∈ F (m,n) so that the density of X is given by

fX(x) =
Γ(m+n

2 )
(
m
n

)m/2
Γ(m2 )Γ(n2 )

xm/2−1

(1 + mx
n )(m+n)/2

, 0 < x <∞.

Let Y = 1/(1 + m
nX) so that if 0 ≤ y ≤ 1, then the distribution function of Y is

FY (y) = P (Y ≤ y) = P (1/(1 + m
nX) ≤ y) = P (1 + m

nX ≥ 1/y) = P (X ≥ n
m(1/y − 1))

= 1− P (X ≤ n
m(1/y − 1))

= 1−
∫ n

m
(1/y−1)

0

Γ(m+n
2 )

(
m
n

)m/2
Γ(m2 )Γ(n2 )

xm/2−1

(1 + mx
n )(m+n)/2

dx.

Taking derivatives with respect to y gives

fY (y) =
Γ(m+n

2 )
(
m
n

)m/2
Γ(m2 )Γ(n2 )

( nm(1/y − 1))m/2−1

(1 + m n
m

(1/y−1)

n )(m+n)/2
· n

my2

=
Γ(m+n

2 )
(
m
n

)m/2 ( n
m

)m/2
Γ(m2 )Γ(n2 )

(1/y − 1)m/2−1

(1/y)(m+n)/2
· 1
y2

=
Γ(m+n

2 )
Γ(m2 )Γ(n2 )

ym/2+n/2y−2y1−m/2(1− y)m/2−1

=
Γ(m+n

2 )
Γ(m2 )Γ(n2 )

yn/2−1(1− y)m/2−1

for 0 ≤ y ≤ 1. We recognize that this is the density of a β(n/2,m/2) random variable, and so we
conclude that Y = 1/(1 + m

nX) ∈ β(n/2,m/2).

Problem #8. Suppose that X ∈ N(0, 1) and Y ∈ N(0, 1) are independent random variables. Let
U = X

Y and V = Y so that solving for X and Y gives

X = UV and Y = V.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣v u
0 1

∣∣∣∣ = v.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (uv, v) · |J | = |v|fX(uv)fY (v)

using the assumed independence of X and Y . Substituting in the corresponding densities gives

fU,V (u, v) = |v| · 1√
2π
e−u

2v2/2 · 1√
2π
e−v

2/2 =
|v|
2π
e−

v2

2
(u2+1)

provided −∞ < u, v <∞. The marginal density of U is

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
∫ ∞
−∞

|v|
2π
e−

v2

2
(u2+1) dv = 2

∫ ∞
0

v

2π
e−

v2

2
(u2+1) dv =

∫ ∞
0

v

π
e−

v2

2
(u2+1) dv

since the integrand is even.
(continued)



Making the substitution z = −v2(u2 + 1)/2 so that dz = −v(u2 + 1) gives

fU (u) =
1

π(u2 + 1)

∫ ∞
0

e−z dz =
1

π(u2 + 1)

for −∞ < u < ∞. We recognize that this is the density of a C(0, 1) random variable, and so we
conclude that U = X/Y ∈ C(0, 1).

Problem #9. Suppose that X ∈ N(0, 1) and Y ∈ χ2(n) are independent random variables. Let
U = X√

Y/n
and V =

√
Y/n so that solving for X and Y gives

X = UV and Y = nV 2.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣v u
0 2nv

∣∣∣∣ = 2nv2.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (uv, nv2) · |J | = 2nv2fX(uv)fY (nv2)

using the assumed independence of X and Y . Substituting in the corresponding densities gives

fU,V (u, v) = 2nv2 1√
2π
e−u

2v2/2 1
Γ(n/2)

(nv2)n/2−12−n/2e−nv
2/2 =

nn/2

2n/2−1/2
√
π Γ(n/2)

vne−v
2(u2+n)/2

provided that −∞ < u <∞, 0 < v <∞. The marginal density of U is

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
nn/2

2n/2−1/2
√
π Γ(n/2)

∫ ∞
0

vne−v
2(u2+n)/2 dv.

Making the substitution z = v2(u2 + n)/2 so that dz = v(u2 + n)dv gives

nn/2

2n/2−1/2
√
π Γ(n/2)

∫ ∞
0

vne−v
2(u2+n)/2 dv

=
nn/2

2n/2−1/2
√
π Γ(n/2)

(u2 + n)−1/2−n/22n/2−1/2

∫ ∞
0

zn/2−1/2e−z dz

=
nn/2√
π Γ(n/2)

(u2 + n)−1/2−n/2Γ(n/2 + 1/2)

=
nn/2Γ(n/2 + 1/2)√

π Γ(n/2)
(u2 + n)−1/2−n/2

=
Γ(n+1

2 )
√
nπ Γ(n2 )

1
(1 + u2

n )(n+1)/2

provided −∞ < u <∞. We recognize that this is the density of a t(n) random variable, and so we
conclude that U = X√

Y/n
∈ t(n).



Problem #10. Suppose that X ∈ χ2(m) and Y ∈ χ2(n) are independent random variables. Let
U = X/m

Y/n and V = Y/n so that solving for X and Y gives

X = mUV and Y = nV.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣mv mu

0 n

∣∣∣∣ = mnv.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (muv, nv) · |J | = mn|v|fX(muv)fY (nv)

using the assumed independence of X and Y . For 0 < u <∞, 0 < v <∞, we can substitute in to
the corresponding densities (noting that |v| = v) to conclude

fU,V (u, v) = mnv
1

Γ(m/2)
(muv)m/2−12−m/2e−muv/2

1
Γ(n/2)

(nv)n/2−12−n/2e−nv/2

=
mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
vm/2+n/2−1um/2−1e−v(mu+n)/2.

The marginal density of U is

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
um/2−1

∫ ∞
0

vm/2+n/2−1e−v(mu+n)/2 dv.

Making the substitution z = v(mu+ n)/2 so that dz = (mu+ n)/2dv gives

mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
um/2−1

∫ ∞
0

vm/2+n/2−1e−v(mu+n)/2 dv

=
mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
um/2−12m/2+n/2(mu+ n)−m/2−n/2

∫ ∞
0

zm/2+n/2+1e−z dz

=
mm/2nn/2

Γ(m/2)Γ(n/2)
um/2−1(mu+ n)−m/2−n/2Γ(m/2 + n/2)

=
Γ(m+n

2 )
Γ(m2 )Γ(n2 )

mm/2nn/2
um/2−1

(mu+ n)(m+n)/2

=
Γ(m+n

2 )
(
m
n

)n/2
Γ(m2 )Γ(n2 )

um/2−1

(1 + mu
n )(m+n)/2

provided 0 < u < ∞. We recognize that this is the density of a F (m,n) random variable, and so
we conclude that U = X/m

Y/n ∈ F (m,n).

Problem #11. If X ∈ Exp(a), then a quick calculation shows that 2X
a ∈ Exp(2). However,

comparing the exponential and chi-square densities, we see that Exp(2) = χ2(2). Similarly, 2Y/a ∈
Exp(2) = χ2(2). Thus, using the result of Problem #10, we conclude that

X

Y
=

2X/a
2Y/a

=
(2X/a)/2
(2Y/a)/2

∈ F (2, 2).



Problem #29. Suppose that X and Y have joint density

fX,Y (x, y) =

{
2

(1+x+y)3
for x, y > 0,

0, otherwise.

(a) Let U = X + Y and V = X
X+Y so that solving for X and Y gives

X = UV and Y = U − UV.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ v u
1− v −u

∣∣∣∣ = −u.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (uv, u− uv) · |J | = 2
(1 + uv + u− uv)3

· | − u| = 2u
(1 + u)3

,

provided that 0 < u < ∞, 0 < v < 1. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that

fU,V (u, v) = fU (u) · fV (v)

where
fU (u) =

2u
(1 + u)3

for u > 0, and fV (v) = 1 for 0 < v < 1.

Therefore, the density of X + Y is

fX+Y (u) =
2u

(1 + u)3
for u > 0.

(b) Let U = X − Y and V = X, so that solving for X and Y gives

X = V and Y = V − U.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 0 1
−1 1

∣∣∣∣ = 1.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (v, v − u) · |J | = 2
(1 + v + v − u)3

· 1 =
2

(1 + 2v − u)3
,

provided that v > u and v > 0 (i.e., v > max{0, u}), and −∞ < u < ∞. If u > 0, then
max{u, 0} = u, and so we calculate

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
∫ ∞
u

2
(1 + 2v − u)3

dv =
1

2(1 + 2v − u)2

∣∣∣∣∞
u

=
1

2(1 + u)2
.

If u ≤ 0, then max{u, 0} = 0, and so we calculate

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
∫ ∞

0

2
(1 + 2v − u)3

dv =
1

2(1 + 2v − u)2

∣∣∣∣∞
0

=
1

2(1− u)2
.

Therefore, the density of X − Y is

fX−Y (u) =
1

2(1 + |u|)2
for −∞ < u <∞.



Problem #21. Suppose that X and Y have joint density

fX,Y (x, y) =

{
x

(1+x)2(1+xy)2
, for x, y > 0,

0, otherwise.

Let U = X and V = XY so that solving for X and Y gives

X = U and Y = V/U.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 1 0
−v/u2 1/u

∣∣∣∣ =
1
u
.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (u, v/u) · |J | = u

(1 + u)2(1 + u · v/u)2
· 1
u

=
1

(1 + u)2
· 1

(1 + v)2
,

provided that 0 < u < ∞, 0 < v < ∞. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fU,V (u, v) = fU (u) · fV (v)

where
fU (u) =

1
(1 + u)2

for u > 0, and fV (v) =
1

(1 + v)2
for v > 0.

Notice that both U and V have the same distribution, namely F (2, 2).

Problem #23. Suppose that U = X2Y and let V = X. Solving for X and Y gives

X = V and Y =
U

V 2
.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 0 1
v−2 −2uv−3

∣∣∣∣ = −v−2.

If the density of (X,Y )′ is

fX,Y (x, y) =

{
e−x

2y, for x ≥ 1, y > 0,
0, otherwise,

then the density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (v, uv−2) · |J | = 1
v2
e−u

provided that v ≥ 1 and u > 0. We can now determine the density of U as follows.



Routine Way: The marginal density of U is

fU (u) =
∫ ∞
−∞

fU,V (u, v) dv =
∫ ∞

1

1
v2
e−u dv = e−u

[
−v−1

]∞
1

= e−u

for u > 0. We recognize that this is the density of an exponential random variable with parameter
1; that is, U = X2Y ∈ Exp(1).

Slick Way: Since the joint density of (U, V )′ is

fU,V (u, v) =

{
v−2e−u, for v ≥ 1, u > 0,
0, otherwise,

we can immediately conclude that U and V are independent random variables with fV (v) = v−2

for v ≥ 1 and fU (u) = e−u for u > 0. And so we find (as before) that U = X2Y ∈ Exp(1).

Problem #24. Suppose that X and Y have joint density

fX,Y (x, y) =

{
λ2e−λy, for 0 < x < y,

0, otherwise.

Let U = Y and V = X
Y−X so that solving for X and Y gives

X =
UV

1 + V
and Y = U.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣v(1 + v)−1 u(1 + v)−2

1 0

∣∣∣∣ = − u

(1 + v)2
.

The density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (uv(1 + v)−1, u) · |J | = λ2e−λu · u

(1 + v)2
= λ2u e−λu · 1

(1 + v)2
,

provided that 0 < u < ∞, 0 < v < ∞. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fU,V (u, v) = fU (u) · fV (v)

where
fU (u) = λ2u e−λu for u > 0, and fV (v) =

1
(1 + v)2

for v > 0.

Notice that U ∈ Γ(2, λ−1) and that V ∈ F (2, 2).


